
Genetic and Environmental Influences of General Cognitive
Ability: Is g a valid latent construct?

Matthew S. Panizzon1,2,*, Eero Vuoksimaa1,2,3,*, Kelly M. Spoon4, Kristen C. Jacobson5,
Michael J. Lyons6, Carol E. Franz1,2, Hong Xian7,8, Terrie Vasilopoulos5, and William S.
Kremen1,2,9

1Department of Psychiatry, University of California, San Diego, La Jolla, CA 2Center for
Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla,
CA 3Department of Public Health, University of Helsinki, Finland 4Computational Science
Research Center, San Diego State University, San Diego, CA 5Department of Psychiatry,
University of Chicago, Chicago, IL 6Department of Psychology, Boston University, Boston, MA
7Research Service, St. Louis Veterans Affairs Medical Center, St. Louis, MO 8Department of
Biostatistics, St. Louis University School of Public Health, St. Louis, MO 9Center of Excellence for
Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA

Abstract

Despite an extensive literature, the “g” construct remains a point of debate. Different models

explaining the observed relationships among cognitive tests make distinct assumptions about the

role of g in relation to those tests and specific cognitive domains. Surprisingly, these different

models and their corresponding assumptions are rarely tested against one another. In addition to

the comparison of distinct models, a multivariate application of the twin design offers a unique

opportunity to test whether there is support for g as a latent construct with its own genetic and

environmental influences, or whether the relationships among cognitive tests are instead driven by

independent genetic and environmental factors. Here we tested multiple distinct models of the

relationships among cognitive tests utilizing data from the Vietnam Era Twin Study of Aging

(VETSA), a study of middle-aged male twins. Results indicated that a hierarchical (higher-order)

model with a latent g phenotype, as well as specific cognitive domains, was best supported by the

data. The latent g factor was highly heritable (86%), and accounted for most, but not all, of the

genetic effects in specific cognitive domains and elementary cognitive tests. By directly testing

multiple competing models of the relationships among cognitive tests in a genetically-informative

design, we are able to provide stronger support than in prior studies for g being a valid latent

construct.
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The construct of “g” has arisen from the observation that nearly all cognitive tests are

correlated with one another, and when subjected to a principal component/factor analysis

they load positively on the first principal component or factor (Deary, 2012). Since

Spearman’s (1904) introduction of g, it has become a widely popular view that there is a

general factor underlying all cognitive abilities, although alternative theories as to the

structure and origin of the positive manifold for cognitive abilities have been proposed

(Gustafsson, 1984). Here we examine four common models of the observed relationships

among various cognitive tests, three of which include a g factor and one that does not (see

Figure 1). All four models have received support in the literature. In some studies, they have

been directly compared in traditional phenotypic analyses, but, to our knowledge, they have

never all been directly compared against one another in the context of the classical twin

design. Without direct comparison of all of these models, which is the best-fitting model for

the relationships among cognitive tests cannot be determined. It is the first aim of the

present study to directly compare all four of these models using multivariate applications of

the twin design, and by doing so establish the best-fitting model for the genetic and

environmental relationships among multiple cognitive tests.

We also attempt to address whether g is indeed a valid latent construct. Although it may

seem counterintuitive, finding a g factor at the phenotypic level does not necessarily mean

that g is a valid latent construct. Validity can be conceptualized in numerous ways

(Borsboom, Mellenbergh, & van Heerden, 2004). For the purposes of this study we argue

that if g is indeed a valid latent construct, then both the genetic and environmental

covariances among cognitive tests must be mediated through a single latent phenotype. In

other words, it is not sufficient that the pattern of phenotypic relationships among cognitive

tests supports a common latent phenotype. Rather, the genetic and environmental covariance

that underlies the observed phenotypic relationships must also support that conclusion. If

instead the genetic and environmental covariances are best represented by independent

factors, and not a common latent phenotype, this would suggest that g is merely a

psychometric phenomenon originating from the phenotypic correlations among elementary

cognitive tests. This argument is illustrated in Figure 2.

Figure 2A shows a hypothetical factor structure that is based solely on phenotypic

information. Within the twin design the covariance among the same variables can be

represented by either a common pathway model (Figure 2B) or an independent pathways

model (Figure 2C) (Kendler, Heath, Martin, & Eaves, 1987; McArdle & Goldsmith, 1990),

but it is not possible to know which will best represent the data with phenotypic analysis

alone. If the common pathway model provides the best fit to the data then this suggests that

the latent phenotype in the model is indeed a valid construct, as it serves to mediate the

genetic and environmental covariance among the variables. In the independent pathways

model, however, there is no latent phenotype, only independent genetic (A) and

environmental (E) factors. Thus, the model does not support validity of the phenotypically

derived factor. The key point here is that if the independent pathways model provides the

best fit to the data, then it is not appropriate to calculate a heritability estimate (i.e., the

proportion of the phenotypic variance attributable to genetic influences) for the

phenotypically derived g factor. Put another way, if the independent pathways models is the
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best-fitting model, heritability estimates should only be calculated for the individual

variables1.

Researchers who conduct phenotypic studies typically assume that factors such as g are

valid latent constructs. Most likely, it goes unrecognized that this assumption requires that if

the variables were examined in the context of the twin design the common pathways model

would provide the best fit to the data. This assumption, however, is easily tested. It is the

second aim of the present study to compare the common pathway and independent pathways

models of the relationship among cognitive tests in order to determine if there is evidence in

favor of g being a valid latent construct.

Competing Phenotypic Models of General Cognitive Ability

By far, the relationships among multiple cognitive tests are most frequently represented by a

model with a hierarchical structure that includes a latent g factor, as well as specific

cognitive domains. Although multiple terminologies have been used, we define the two

primary competing hierarchical models as the “first-order factor model” and the “higher-

order factor model” (see Figure 1A and 1B, respectively). Both models have been utilized

extensively in the factor analytic literature (Carroll, 1993; Crawford, Deary, Allan, &

Gustafsson, 1998; Gignac, 2008), and at times have been referred to as the direct

hierarchical (first-order) and indirect hierarchical (higher-order) models of general cognitive

ability (Gignac, 2008). Although both models make similar predictions regarding the

covariance among cognitive tests, they are mathematically distinct from one another (Yung,

Thissen, & McLeod, 1999) and fundamentally differ in how they define the role of g

(Gignac, 2005). For instance, in the first-order factor model g is viewed as an independent

latent factor that is directly associated with all elementary (measured) cognitive tests.

Furthermore, specific cognitive domains are assumed to be uncorrelated with g and with one

another. In contrast, in the higher-order factor model g is a superordinate latent factor that

accounts for the correlation among specific cognitive domains. Thus, the association of g

with elementary cognitive tests is assumed to be fully mediated through the specific domains

in the higher-order factor model.

Given their differences, the first-order and higher-order models should be treated as

competing hypotheses for the hierarchical structure of cognition, hypotheses that can be

tested relative to one another. Many studies have merely assumed that either hierarchical

model is the “true model”, and have failed to test whether one provides a better fit (i.e.,

representation of the data) over the other. Direct comparisons of these competing factor

structures are, however, becoming more common. For instance, in a study utilizing the

standardization sample for the WAIS-R, Gignac (2005) concluded that a first-order factor

model provided a better fit to the data than a higher-order factor model. This finding has

since been replicated with the WAIS-III (Gignac, 2006b), the French WAIS-III (Golay &

Lecerf, 2011), the Multidimensional Aptitude Battery (Gignac, 2006a), and the WISC-IV

1There could also be cognitive domains summarizing subsets of the individual variables in each of these models. In that case,
heritability estimates could also be calculated for cognitive domains in the independent pathways model, but there would still be no g
factor.
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(Watkins, 2010). Such results support the concept of g as a first-order or breadth factor

rather than a higher-order superordinate entity (Gignac, 2008).

It is important to recognize that although the first-order and higher-order factor models are

by far the most commonly used to represent the relationships among cognitive tests, there

are additional, competing models that warrant consideration. We refer to the first of these as

the “simple factor model” (see Figure 1C) in which all covariance between cognitive tests is

accounted for by a single latent g factor, while specific cognitive domains are assumed not

to be present. In many ways the simple factor model provides the closest resemblance to

Spearman’s original construct, as individual differences on any given test are accounted for

by the latent factor as well as by the residual influences that are specific to each individual

test (not shown in Figure 1). Although not commonly tested, the simple factor model

provides a critical gauge against which models of greater complexity can be compared.

Yet another alternative model for the relationships among cognitive tests is the “correlated

cognitive domains model” (see Figure 1D) in which a latent g factor is not included. This

model is in essence the antithesis of the simple factor model, as the two make opposing

assumptions about the source of the covariance between tests and the existence of specific

cognitive domains. While the positive manifold between cognitive tests has traditionally

been interpreted as reflecting the presence of a true latent g factor, alternative theories exist

which do not require g – for example Thomson’s bonds model (Bartholomew, Deary, &

Lawn, 2009; Thomson, 1916) and the mutualism model (van der Maas, et al., 2006). The

correlated cognitive domains model has often been found to provide fits to the data that are

as good if not better than the hierarchical models. For example, although Bodin et al. (2009)

concluded that there was a higher-order factor structure for WISC-IV, their correlated

factors model fit the data equally well (Bodin, Pardini, Burns, & Stevens, 2009). Similarly,

Dickinson et al. (2006) found that a six-correlated-factors model fit the data equally well as

a six-factor model with a higher-order factor (Dickinson, Ragland, Calkins, Gold, & Gur,

2006). More recently, Holdnack et al. (2011) concluded that a seven-correlated-factor model

without g and a five-factor model with g fit combined data from the WAIS-IV and WMS-IV

equally well (Holdnack, Xiaobin, Larrabee, Millis, & Salthouse, 2011). Findings such as

these argue for studying the correlated cognitive domains model alongside models that

include a g factor. The correlated cognitive domains model, like the simple factor model,

provides a critical indicator with which to gauge how well hierarchical models account for

the relationships among cognitive tests. It should be noted, the correlated cognitive domains

model can be differentiated from higher-order factor model only if four domains or more are

examined.

The number of individual tests and cognitive domains shown in the models in Figure 1 are

not intended to provide a comprehensive representation of the content of g. Our focus in this

paper is on the factor structure, not the specific content. Studies of g may extend or reduce

the number of tests and domains used while the fundamental structure of the model remains

the same. Similarly, the higher-order model (Figure 1B) can be extended to include more

than three strata, as in the case of the Verbal-Perceptual-Image Rotation (VPR) model

(Johnson & Bouchard, 2005), while still representing g as a superordinate latent factor.
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What is important for purposes of this study is that such changes do not alter the basic

structure of each model.

Applications of the Twin Design to the Study of General Cognitive Ability

Multivariate extensions of the classical twin design offer a unique opportunity to test

specific hypotheses regarding the nature of the relationships among cognitive tests, and to

test whether the g factor is indeed a valid latent construct. It is well established that there are

substantial genetic effects on general and specific cognitive abilities, with estimates of the

heritability varying between .30 and .80 (T. J. Bouchard, Jr. & McGue, 2003; Deary,

Johnson, & Houlihan, 2009). Beyond the estimation of heritability, multivariate twin

analyses allow for the covariance between variables to be decomposed into genetic and

environmental components, thus enabling a much more comprehensive examination of the

underlying relationships.

The twin design allows for a unique multivariate structure in which a latent phenotype is not

modeled, but rather the genetic and environmental covariances are constrained into separate

(independent) factors. This model is referred to as the biometric or independent pathways

model (Kendler, et al., 1987; McArdle & Goldsmith, 1990). Figure 2C provides an example

of the independent pathways model as it would be applied to the simple factor model. The

model imposes genetic and environmental influences on the respective covariance estimates

while simultaneously allowing variable-specific (i.e., residual) genetic and environmental

influences. These genetic and environmental influences then act on each variable through

separate, independent pathways. As a result, the covariance between any pair of variables

can be accounted for by either the latent genetic or environmental influences. An advantage

of the independent pathways model is that it allows for the genetic and environmental

structure to be tested separately from one another. Thus, one is able to remain agnostic as to

whether genetic and environmental influences adhere to the same covariance structure. In

other words, the model does not require an overarching latent phenotype, but rather can

account for the covariance via separate genetic and environmental factors that are

independent of one another.

In contrast, the common pathway model assumes that the covariance among variables is

accounted for by a single underlying latent phenotype, and that the genetic and

environmental contributions to the observed covariance are accounted for by the genetic and

environmental influences that operate through that phenotype (Kendler, et al., 1987;

McArdle & Goldsmith, 1990). In other words, in the common pathway model the

relationships among variables are accounted for by a single latent construct that has its own

genetic and environmental influences (see Figure 2B). On its own, the latent factor derived

from the common pathway model is essentially the same as the latent factor that is derived

from standard phenotypic analyses. If the common pathway model provides a good fit to the

data, then so too must the independent pathways model, as the ability to distinguish one

from the other is based entirely on the collinearity of the factor loadings in the independent

pathways mode. What is important is which model provides the best fit to the data;

therefore, only when the fit of the common pathways model is tested against that of the
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independent pathways model is one able to empirically determine whether it truly provides

the best representation of the data.

Phenotypic analyses are unable to test an independent pathways model; therefore they

possess no empirical means of validating the constructs that are represented through

traditional factor analysis. Testing the independent and common pathway models relative to

one another is a unique aspect of the multivariate classical twin design. To our knowledge,

only one prior twin study has used the comparison of the independent and common

pathways models as a means of examining the validity of g. Utilizing data from a Japanese

twin study, Shikishima and colleagues (2009) demonstrated that relationships between

measures of logical, verbal, and visual-spatial abilities could best be represented by a

common pathway model, and that the fit of this model was superior to that of an

independent pathways model (Shikishima, et al., 2009). This study, while providing

evidence consistent with g being a valid latent construct, with only three variables they

could not test either hierarchical model (first-order or higher-order), nor could they

differentiate their factor models from a model consisting only of correlated genetic and

environmental influences.

In addition to Shikishima et al., several twin studies have examined the genetic and

environmental relationships among multiple cognitive tests; however, none have leveraged

the unique advantages of the twin design to the fullest possible extent. Higher-order genetic

and environmental factor structures have been observed in several studies of children

(Cardon, Fulker, Defries, & Plomin, 1992; Luo, Petrill, & Thompson, 1994; Petrill, Luo,

Thompson, & Detterman, 1996). However, each time the preferred model of the genetic and

environmental relationships was not been rigorously tested against other competing models,

and a test for the validity of a latent g construct was not performed. Some twin studies have

directly fit a latent g phenotype to cognitive data in the form of a common pathway model;

however, in these cases the alternative independent pathways model of genetic and

environmental relationships was not tested (Finkel, Pedersen, McGue, & McClearn, 1995;

Johnson, et al., 2007; Petrill, et al., 1998; Petrill, Saudino, Wilkerson, & Plomin, 2001).

Comparing the fit of alternative models of the genetic and environmental relationships was

not the goal of these studies. If, on the other hand, one’s goal is to determine which model of

the genetic and environmental relationships among cognitive tests best represents the data, it

is necessary to directly compare model fits. In some cases the underlying genetic and

environmental factor structures have been found to be different from the phenotypic factor

structure and from one another (Kremen, et al., 2009; Petrill, et al., 1996; Rijsdijk, Vernon,

& Boomsma, 2002), suggesting that each factor structure needs to be tested separately.

The Present Study

We utilized a multivariate application of the classical twin design to elucidate the genetic

and environmental covariance structure among multiple cognitive measures, and formally

test for the presence of a latent g factor. We first compared four distinct models (first-order

factor model, higher-order factor model, simple factor model, and correlated cognitive

domains– as presented in Figure 1) in order to determine which model provided the best

representation of the data, and to establish whether the structure of the genetic and
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environmental covariance among the various tests were indeed the same. We then directly

tested whether a latent g phenotype provided the best representation of the data (as

represented by a common pathways model), or whether the observed covariance was better

accounted for by independent latent genetic and environmental influences (as represented by

an independent pathways model). To the best of our knowledge, no genetically-informative

studies have directly tested all of these competing models against one another. Establishing

the structure of the genetic and environmental covariance among cognitive tests, as well as

addressing the validity of g represents an important step towards obtaining a better

understanding of cognition, the processes that drive cognitive development, and the

Methods

Participants

Data were obtained as part of the Vietnam Era Twin Study of Aging (VETSA), a

longitudinal study of cognitive and brain aging with a baseline in midlife (Kremen, et al.,

2006). VETSA participants were recruited from the Vietnam Era Twin (VET) Registry, a

nationally distributed sample of male-male twin pairs who served in the United States

military at some point between 1965 and 1975. Complete descriptions of the VET Registry’s

history, composition, and method of ascertainment have been provided elsewhere (Eisen,

True, Goldberg, Henderson, & Robinette, 1987; Goldberg, Curran, Vitek, Henderson, &

Boyko, 2002; Goldberg, Eisen, True, & Henderson, 1987; Henderson, et al., 1990).

Although all VETSA participants are military veterans, the majority did not experience

combat situations during their military service. Relative to U.S. census data, VETSA

participants are similar to American men in their age range with respect to demographic and

general health characteristics (Centers for Disease Control and Prevention, 2003). In 92% of

cases, zygosity was determined by analysis of 25 microsatellite DNA markers obtained from

blood samples. For the remainder of the sample zygosity was determined through a

combination of questionnaire and blood group methods. Within the VETSA these two

approaches demonstrated an agreement rate of 95%.

In all, 1,237 individuals participated in the first wave of the VETSA. To be eligible,

participants had to be between the ages of 51 and 59 at the time of recruitment, and both

members of a pair had to agree to participate. Participants traveled to either the University of

California San Diego or Boston University for a day-long series of physiological,

psychological, and cognitive assessments. In approximately 3% of cases, project staff

traveled to the participant’s home town to complete the assessments. Study protocols were

approved by the institutional review boards of both participating universities, and informed

consent was obtained from all participants. The present analyses were based on data from

346 monozygotic (MZ) twin pairs, 265 dizygotic (DZ) twin pairs, and 12 unpaired twins for

whom valid cognitive assessment data were obtained. The average age was 55.4 years (SD =

2.5), and the average years of education was 13.8 (SD = 2.1, Range = 8 to 20).

Measures

Ten measures were selected from the VETSA cognitive battery in order to assess four

domains of functioning. We intentionally targeted cognitive domains that would parallel
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previous confirmatory factor analyses of cognitive tests, such as those conducted on various

versions of the Wechsler intelligence scales (Canivez & Watkins, 2010; Golay & Lecerf,

2011; Watkins, 2010), as well as previous multivariate twin studies of cognition (Cardon, et

al., 1992; Luo, et al., 1994; Petrill, et al., 1996). As noted, our focus is on factor structure

rather than content; therefore, we selected domains that are non-controversial and widely

accepted as relevant for inclusion in intelligence scales. Some domains such as episodic

memory are more subject to debate as to their appropriateness for inclusion in intelligence

scales, and were therefore not included in the present analyses. Care was taken to ensure that

within a cognitive domain the selected variables correlated (at the phenotypic level) more

strongly with one another than with cognitive tests from other domains.

Verbal ability was assessed by the Vocabulary subtest of the Wechsler Abbreviated Scale of

Intelligence (WASI) (Wechsler, 1999), and the Vocabulary component of the Armed Forces

Qualification Test (AFQT) (Uhlaner, 1952). The WASI Vocabulary subtest requires

participants to define a series of increasingly difficult words, with more abstract definitions

receiving greater weighting relative to more concrete definitions. The Vocabulary

component of the AFQT (a timed paper-and-pencil test) requires participants to identify the

correct synonym for a target word presented in a sentence from four multiple-choice

options. The phenotypic correlation between these two tests was .57 (p<.01). Working

memory was assessed by the Digit Span Forward, Digit Span Backward and the Letter-

Number Sequencing subtests of the Wechsler Memory Scales (WMS-3) (Wechsler, 1997).

In Digit Span tests, participants are read a series of numbers which they must then either

repeat in the same order (Forward condition) or in the reverse order (Backward condition).

In Letter-Number Sequencing participants are read a series of spans consisting of numbers

and letters appearing in turn. These spans must then be repeated back in an unscrambled

manner; numbers first in ascending order followed by letters in alphabetical order. The

phenotypic correlations among these three tests ranged from .50 (p<.01) to .52 (p<.01).

Visual-spatial reasoning was assessed by the Matrix Reasoning subtest of the WASI

(Wechsler, 1999), the Gottschaldt Hidden Figures test (Thurstone, 1944) and the Box

Folding component of the AFQT. In the Matrix Reasoning subtest the participant is asked to

complete visually presented patterns that gradually increase in difficulty, by selecting from

five possible solutions. The Hidden Figures test requires the participant to correctly identify

a target figure that is embedded in a more complex two-dimensional design. In the Box

Folding test, the participant is asked to correctly identify one of four cubes that can be made

by folding a target pattern, or one of four patterns that can be made by unfolding a target

cube (the test is evenly split between the two variations). In both variants, there is only one

correct answer among the four alternatives. The phenotypic correlation between these three

tests ranged from .52 (p<.01) to .63 (p<.01). Processing speed was assessed by the Number

Sequencing and Letter Sequencing conditions (Conditions 2 and 3, respectively) of the

Delis-Kaplan Executive Function System (DKEFS) Trail-Making test (Delis, Kaplan, &

Kramer, 2000). Although the Trail Making test is traditionally used as a measure of

executive functioning, Conditions 2 and 3 involve no set-shifting component (i.e., the

participant is asked to sequence through only numbers or letters); thus, the conditions can be

assumed to provide good indicators of psychomotor processing speed. The phenotypic

correlation between these two tests was .60 (p<.01).
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Statistical Analyses

In the classical twin design the variance of a trait can be decomposed into additive genetic

influences (A), non-additive genetic influences that are due to genetic dominance or

epistasis (D), shared or common environmental influences (C) (i.e., environmental factors

that make twins similar to one another), and individual-specific or unique environmental

factors (E) (i.e., environmental factors that make twins different from one another, including

measurement error). Due to issues of model identification only three of these parameters can

be assessed at any one time. When the degree of resemblance for a trait in MZ twins (cross-

twin correlation) is less than twice that of DZ twins, non-additive genetic influences are

assumed to be zero, resulting in what is widely referred to as the ACE model (Eaves, Last,

Young, & Martin, 1978; Neale & Cardon, 1992). Under the ACE model additive genetic

influences are assumed to correlate 1.0 between MZ twins because they generally share

100% of their genes, whereas DZ twins on average share 50% of their segregating genes,

and are therefore assumed to correlate at least .50. Common environmental influences are

assumed to correlate perfectly (1.0) between members of a twin pair regardless of the

zygosity. Unique environmental influences, by definition, are uncorrelated between twin

pairs. The ACE model does not account for the presence of gene-environment interaction or

gene-environment correlation; thus, the latent variance components are assumed to be

independent of one another (Jinks & Fulker, 1970). If such effects were present, estimates of

the relative genetic and environmental influences can be biased in either positive or negative

directions depending on the nature of the effect. The model also assumes the absence of

assortative mating between the parents of twins, an effect that has been found to be

prominent for measures of general cognitive ability (Bouchard & McGue, 1981). The

presence of assortative mating is expected to increase the resemblance of DZ twins relative

to MZ twins, resulting in an over estimation of common environmental effects for a trait and

an underestimation of the heritability.

Multivariate twin analyses extend the univariate ACE model so as to further decompose the

covariance between phenotypes into genetic and environmental components. This then

allows for the estimation of genetic and environmental correlations between variables

(representing the degree of shared genetic and environmental variance), as well as the

testing of a variety of genetically- and environmentally-informed factor models. Carey

(1988) has pointed out that although genetic correlations represent shared genetic variance,

they do not necessarily indicate that the same genes are directly influencing the correlated

phenotypes. Rather, they tell us that genetic influences on each phenotype are correlated.

The latter, statistical pleiotropism, may or may not be due to the former, biological

pleiotropism (Carey, 1988). Nevertheless, Carey does note that biological pleiotropism can

be strongly inferred if the phenotypes are accounted for by additive genetic influences of

many genes. Genome-wide association analyses of g have shown that this is indeed the case

(Benyamin, et al., In Press; Davies, et al., 2011); as such it is also likely true that most

underlying cognitive abilities are also highly polygenic underpinnings. Thus, it is a

reasonable, although not certain, assumption that genetic correlations in the present study

represent biological pleiotropism. Environmental correlations between phenotypes are

subject to similar considerations; however, as with genetic influences, it is likely that each
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phenotype is influenced by multiple environmental factors that each contributes a small

amount to the observed variance.

In order to elucidate the nature of the genetic and environmental covariance among the

cognitive tests, we first fit a series of independent pathways models to the data (Kendler, et

al., 1987; McArdle & Goldsmith, 1990). Four models, each reflecting one of our specific

theoretical models (see Figure 1), were separately fit to the genetic and environmental

covariance structures. The “first-order factor model” (Figure 1A) was fit as a five factor

model, in which all variables were allowed to load onto one factor, while the remaining

factors (conceptualized as specific cognitive domains) were constrained so that two to three

variables loaded onto each. In this model the covariance between measured variables is

accounted for by two sources: the g factor and the specific cognitive domain factors. The

domain factors are also assumed to be orthogonal to one another. In order for this model to

be identified, parameters leading to domains that included only two variables (i.e., verbal

ability and processing speed) were constrained to be equal to one another within that

domain. The “higher-order factor model” (Figure 1B) closely resembles the “first-order

factor model”; however, in this case g is represented as a higher-order factor onto which the

four domain-level factors directly load. This model assumes that g accounts for the

correlation between specific cognitive domains and that its impact on elementary cognitive

tests is fully mediated through the domain. In addition, each domain is also allowed to

possess genetic and environmental influences that are independent of the other domains. The

“simple factor model” (Figure 1C) was fit as a single factor independent pathway model. All

eight measured variables load directly onto the g factor, and the g factor accounts for all

genetic or environmental covariance among the variables. Finally, “correlated cognitive

domains model” (Figure 1D) was fit as a four-factor model, each factor representing a

specific cognitive domain, with the covariance between variables accounted for by the

correlations between the domains. This model, as its name implies, requires no latent g

factor. Common pathway models were subsequently used to test whether the genetic and

environmental factor structures could be constrained into latent phenotypes (Kendler, et al.,

1987; McArdle & Goldsmith, 1990). Although the common pathway model can

algebraically be shown to be nested within the independent pathways model (Kendler, et al.,

1987), for the present analyses the two are utilized as alternative representations of the data,

and are therefore directly compared to one another.

All analyses were performed using the maximum-likelihood-based structural equation

modeling software OpenMx (Boker, et al., 2011). Prior to model fitting, all variables were

standardized to a mean of 0 and a variance of 1.0 in order to simplify the specification of

start values and parameter boundaries. When necessary, variables were square-root or log

transformed in order to normalize the observed distribution. Measures of processing speed

(total time for completion of D-KEFS Trail Making Conditions 2 and 3) were reverse coded

so that faster completion times correlated positively with all other cognitive tests. Evaluation

of model fit was performed using the likelihood-ratio chi-square test (LRT), which is

calculated as the difference in the −2 log-likelihood (−2LL) of a model relative to that of a

comparison model. For the present analyses, the full ACE Cholesky was utilized as the

comparison model for all models tested, as it is the most saturated representation of the
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genetic and environmental relationships among the variables. In addition to the LRT, we

utilized the Bayesian Information Criterion (BIC) as a secondary indicator of model fit

(Akaike, 1987; Williams & Holahan, 1994). The BIC indexes both goodness-of-fit and

parsimony, with more negative values indicating a better balance between them, and has

been found to outperform the commonly used Akaike Information Criterion (AIC) with

regard to model selection in the context of complex multivariate models (Markon &

Krueger, 2004).

Results

Table 1 provides the standardized variance components for each of the cognitive variables as

derived from the full ACE Cholesky. Complete matrices of the cross-twin same trait and

cross-twin cross-trait correlations separated by zygosity group are available in Supplemental

Table 1. Heritability estimates ranged from .30 for Trail Making Number Sequencing

condition (condition #2), to .65 for Hidden Figures. All heritability estimates were

significantly different from zero based on the 95% confidence intervals. Estimates of

common environmental influence ranged from .04 for Box Folding, to .19 for WASI

Vocabulary. The estimates for WASI Vocabulary (C = .19), AFQT Vocabulary (C = .11),

Digit Span Forwards (C = .12), Letter-Number sequencing (C = .17), and Matrix Reasoning

(C = .18) were significantly different from zero based on the 95% confidence intervals.

Phenotypic, genetic, and environmental correlations between all of the cognitive variables

are presented in Supplemental Table 2. Significant phenotypic (rp) and genetic (rg)

correlations were present among all of the variables (rp range = .14 to .65; rg range = .37 to .

98). In contrast, only 7 of 45 common environmental correlations (rc) were found to be

significantly greater than zero; these values ranged from .79 to .98. Unique environmental

correlations (re) ranged from .00 to .37, with 22 of the 45 correlations proving to be

significantly greater than zero.

Given the small number of significant common environmental correlations, we tested

whether all common environment covariance parameters could be fixed at zero. The

resulting model provided a good fit relative the full Cholesky (LRT = 19.79, ΔDF = 45, p > .

99) and produced a much lower BIC value (BIC = −48467.26). Moreover, all common

environmental influences could be fixed to zero without a significant reduction in model fit

(LRT = 21.29, ΔDF = 55, p > .99; BIC = −48530.11). Rather than drop common

environmental influences from all subsequent multivariate models, we elected to keep the

common environment freely estimated (i.e., common environmental influences would be

allowed to correlate among the variables) and impose no specific factor structure on this

aspect of the data. This allowed estimates of the genetic variance and covariance to remain

unbiased by common environmental influences which exceeded 10% of the phenotypic

variance for 7 of the 10 cognitive variables. In addition, this decision allowed us to avoid the

likely ambiguous modeling fitting results that would have arisen from trying to fit a factor

structure to limited covariance information.
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Tests of the Genetic and Unique Environmental Factor Structures

Model-fitting results for tests of the genetic and unique environmental factor structures are

presented in Table 2. Each factor structure was tested independently of the other; in other

words, when the genetic factor structure was tested the unique environment remained

estimated as a Cholesky. For the genetic structure, the simple factor model could be

immediately dismissed as a viable explanation of the data, as it resulted in a significant

change in model fit relative to the full Cholesky (LRT = 51.61, ΔDF = 35, p = .03). The

three remaining genetic models all resulted in non-significant reductions in fit relative to the

full Cholesky; however, the higher-order factor model demonstrated a clear advantage based

on the BIC.

As with the additive genetic structure, the simple factor model was a poor fit for the unique

environmental structure (LRT = 102.19, ΔDF = 35, p < .01). The three remaining factor

structures each resulted in a nonsignificant change in fit relative to the full Cholesky;

however, the higher-order factor model once again demonstrated a clear advantage over the

other models based on the BIC value (−48368.18).

Testing for the Presence of Latent Phenotypes

Given that the higher-order factor structure provided the best fit for both the additive genetic

and unique environmental influences, we proceeded to test whether a higher-order common

pathway model could be fit to the data. We first simultaneously fit the higher-order factor

models for both the additive genetic and unique environmental structures. As would be

expected from the tests of the individual structures, the model resulted in a good fit relative

to the full Cholesky (LRT = 57.63, ΔDF = 62, p = .63, BIC = −48538.81). We then tested

whether the domain-level genetic and environmental factors could be collapsed into four

latent phenotypes, while allowing the higher-order genetic and environmental factors to

remain independent of each other (i.e., a combined independent and common pathways

model). This model provided a direct test of whether latent cognitive domains could be

assumed to be present, and served as an intermediate model between the previous higher-

order independent pathways model and the final higher-order common pathway model. The

model was a good fit relative to the Cholesky, and resulted in a BIC value that were lower

than those of the of higher-order independent pathways model (LRT = 60.66, ΔDF = 68, p

= .72, BIC = −48574.39). Finally, we fit a higher-order common pathway model in which

domain level and higher-order genetic and unique environment factors were collapsed into

latent cognitive domains and a latent higher-order g factor. The model was a good fit

relative to the full Cholesky (LRT = 68.61, ΔDF = 71, p = .56), and resulted in the lowest

BIC value of any model yet tested (BIC = −48585.74).

Standardized parameter estimates for the best-fitting model of the combined genetic and

unique environmental factor structures (the higher-order common pathway model) are

presented in Figure 3. The higher-order g factor was found to be highly heritable, as additive

genetic influences accounted for 86% of the variance in the latent phenotype. The factor

accounted for 60% of the phenotypic variance for the verbal ability domain, 51% of the

variance for working memory, 71% of the variance for visual-spatial reasoning, and 53% of

the variance for the processing speed domain. Each measured variable loaded significantly

Panizzon et al. Page 12

Intelligence. Author manuscript; available in PMC 2015 February 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



on the corresponding domain-level factor. Domain-specific genetic contributions to the

phenotypic variance ranged from 0% for processing speed to 36% for working memory. The

genetic influences specific to verbal ability, working memory, and visual-spatial reasoning

were found to be significantly different from zero based on 95% confidence intervals.

Unique environmental influences specific to each domain also demonstrated a wide range,

accounting for little of the variance in verbal ability (6%) and visual-spatial reasoning

(6.8%) and 46% of the variance in processing speed. At the level of the individual cognitive

tests, variable-specific additive genetic influences contributed very little to the observed

variance, most were less than 5%. The only significant variable specific genetic influences

were observed for the Hidden Figures test, which accounted for approximately 15% of the

variance. Variable-specific unique environmental influences ranged from 20% of the

variance for Hidden Figures test to 45% of the variance for AFQT Vocabulary, Digit Span

Backwards, and Letter Sequencing Condition of the D-KEFS Trail Making test.

Discussion

Although g is one of the most widely utilized and frequently discussed psychological

constructs, tests of its underlying structure as well as its validity have been surprisingly

incomplete in the extant literature. The results of the present study suggest that the best

representation of the relationships among cognitive tests is a higher-order factor structure,

one that applies to both the genetic and environmental covariance. The resulting g factor was

highly heritable with additive genetic effects accounting 86% of the variance. These results

are consistent with the view that g is largely a genetic phenomenon (Plomin & Spinath,

2002).

At first glance our finding of a higher-order structure to the relationships among cognitive

tests may appear obvious, but it is important to recognize that the extensive literature on this

topic includes few comparisons of competing models, and that in phenotypic studies that

have compared competing models the first-order factor model has often proven to provide

the best fit to the data (Gignac, 2005, 2006a, 2006b, 2008; Golay & Lecerf, 2011; Watkins,

2010). However, by directly testing all of the models against one another we were able to

more firmly conclude that the higher-order factor model best represents the data.

This is the first genetically-informative study that has thoroughly tested alternative models

of the relationships among cognitive tests against one another. In the twin studies we have

reviewed (Cardon, et al., 1992; Finkel, et al., 1995; Luo, et al., 1994; Petrill, et al., 1996;

Petrill, et al., 1998; Petrill, et al., 2001; Rijsdijk, et al., 2002), either a priori assumptions

about the presence of the latent g phenotype were made or the fit of their models were not

tested against the fits of other alternative models. Although it did not prove to be the best-

fitting model in our study (as was the case in Shikishima et al, 2009), the independent

pathways model was essential to establishing the validity of the latent g factor. The

independent pathways model is unique in that it allows for an intermediate state between a

model of correlated traits and one that allows for the presence of a true latent phenotype (i.e.

the common pathway model). Such a state is entirely plausible from a biological

perspective, and cannot be assessed with standard phenotypic analyses. Shikishima et al.

(2009) did test the relative fit of both independent and common pathway models, but as they
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included only three cognitive variables they were not able to distinguish between the various

alternative models that we examined.

Besides the presence of a latent g phenotype, we observed latent phenotypes at the specific

cognitive domain level. As is shown in Figure 3, factor loadings from the specific domains

onto the g factor were all comparable in magnitude (i.e., no factor loading was significantly

different from any other), suggesting that from a “bottom-up” perspective each domain

contributed relatively equally to the higher-order factor. However, from a strictly genetic

perspective the relationships between the g factor and the specific domains were less

uniform. Residual genetic influences accounted for none of the variance in the processing

speed domain (0%), in contrast to other domains where residual genetic influences ranged

from 23% to 36% of the variance. These domain-specific genetic influences indicate that

there is substantially more to verbal ability, visual-spatial reasoning, and working memory

than merely the genes that are common to all cognitive domains.

Contrary to many of the phenotypic studies that have directly compared competing models

of general cognitive ability (Gignac, 2005, 2006a, 2006b, 2008; Golay & Lecerf, 2011;

Watkins, 2010), the present results support a higher-order factor model over the first-order

factor model. A likely explanation for the discrepant results may be found in the degree to

which the cognitive variables selected for analysis correlated within and across specific

domains. Many, if not most, of the previous phenotypic studies that have examined both the

higher-order and first-order factor models utilized cognitive measures that easily load onto

multiple cognitive domains with relatively similar weightings. Indeed, results from a

confirmatory factor analysis for the French WAIS clearly demonstrate that equivalent

loadings can be obtained if measured variables are reconfigured to load onto different

domains (Golay & Lecerf, 2011). A battery in which elementary cognitive tests correlate

equally well with tests from different domains as they do with tests from the same domain

would seem likely to favor the first-order structure solution. On the other hand, the power to

reject the first-order model is suggested to be very low (e.g., Maydeu-Olivares & Coffman,

2006). In many cases, first-order and higher-order models have very similar fit to the data

and the factor loadings for the domain level and g-factor are very similar in these two

models (see e.g., (Niileksela, Reynolds, & Kaufman, 2013). Nevertheless, the first-order

model is less parsimonious than the higher-order model.

It should also be noted that the results of the present study may depend in part on the a

priori criteria that were used to select the number and type of elementary cognitive tests and

specific cognitive domains we examined. It has been shown that across different cognitive

batteries, higher-order phenotypic factors that are assumed to represent g correlate very

highly with one another (greater than .90), leading to the conclusion that g is highly stable

across different methods of measurement (Johnson, Bouchard, Krueger, McGue, &

Gottesman, 2004; Johnson, Nijenhuis, & Bouchard, 2008). It remains to be seen whether the

structure of the genetic and environmental covariance among cognitive measures is affected

by the chosen elementary cognitive tests and the number of indicators of specific cognitive

domains.
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Although we provide evidence in favor of g being a valid latent construct, it is still the case

that we do not know if g is a causal individual differences construct with respect to specific

cognitive abilities. If one interprets the higher-order common pathway model from a top-

down perspective, it would seem to imply that g is indeed a causal individual differences

construct. However, this model is not directional, and it can also be explained by models

that do not include a g factor, such as the mutualism model (van der Maas et al 2006). In the

mutualism model, g is an emergent property of the positive manifold among specific

cognitive abilities rather than a construct that causes the relationships among cognitive

abilities. On the other hand, we think it is still the case that, at another level, g can be viewed

as a causal individual differences construct with respect to other phenomena. For example,

evidence indicates that this is the case for a measure of g at age 20 in the VETSA sample

and a measure of g at age 11 in the Lothian Birth Cohort. In both samples, findings strongly

suggest that an early measure of g is a causal factor accounting for individual differences in

several aging outcomes (Deary, Leaper, Murray, Staff, & Whalley, 2003; Franz, et al., 2011;

Kremen, et al., 2007; Walker, McConville, Hunter, Deary, & Whalley, 2002; Whalley &

Deary, 2001)—even if we do not fully understand the origins of g itself.

There are some potential limitations of the present study that warrant consideration. The all

male, rather homogeneous composition of the VETSA sample limits our ability to generalize

these findings to other populations. It is also possible that the observed magnitude of genetic

influences and/or the underlying genetic and environmental covariance structure observed in

the present sample could vary as a function of any number of socioeconomic factors. It has

repeatedly been shown that socioeconomic factors sometimes influence the genetic and

environmental determinants of cognition both during childhood and in adulthood

(Hanscombe, et al., 2012; Kremen, et al., 2005; Tucker-Drob, Rhemtulla, Harden,

Turkheimer, & Fask, 2011; Turkheimer, Haley, Waldron, D’Onofrio, & Gottesman, 2003);

however, no studies have looked at whether socioeconomic factors influence the genetic and

environmental relationships between cognitive measures. We must also acknowledge that

the models examined in the present study are not a comprehensive summary of all

competing models of the relationships among cognitive tests. For example, we did not test

the fluid-crystallized model of intelligence (Cattell, 1963; Horn & Cattell, 1966), which

contains two higher-order factors. Rather, we examined what we believed to be a set of

reasonable hypotheses given the constraints of the data. The addition of more or different

elementary cognitive tests might result in different numbers of domains, different content

within the domains, or a different number of strata in the model. However, such changes do

not in and of themselves alter the basic structure of the models presented in Figure 1, and are

not really relevant to the question of whether g is a valid superordinate latent factor. For

example, the VPR model (Johnson & Bouchard, 2005) was based on 42 tests and includes

four strata rather than the three observed in the present study. With only ten individual tests,

we were unlikely to be able to detect a fourth strata, but the VPR model is still a higher-

order g model. Finally, it should be noted that although the present analyses utilize data from

over 1,200 individuals, our power to distinguish between the models is probably weak.

Thus, we must acknowledge that in a larger twin sample results may differ from what was

obtained in the present study.
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Conclusion

Results from the present study suggest that the well-established covariance among cognitive

tests is indeed best accounted for by a true higher-order latent phenotype that is itself highly

heritable. In testing multiple competing models, as well as leveraging the unique aspects of

the classical twin design, this is the first study to rigorously examine alternative models of

the relationships among cognitive tests, and formally test whether the g factor represents a

true latent phenotype.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Testing g requires direct comparison of multiple models of general cognitive

ability

• Twin analyses can determine if a phenotypic g factor is a valid latent construct

• A higher-order (hierarchical) latent g factor provided the best fit to the data

• The underlying genetic structure supported g as a valid higher-order latent

construct
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Figure 1.
Competing theoretical phenotypic models explaining the relationships among cognitive tests
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Figure 2. Hypothetical phenotypic factor model and corresponding genetically informative factor models
A = Additive genetic influences. E = Unique environmental influences. In order to simplify the figure, common environmental

influences (C) are not presented. Parameters with a subscript notation represent variable specific genetic and environmental

influences.

Panizzon et al. Page 22

Intelligence. Author manuscript; available in PMC 2015 February 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. Best-fitting model of the combined genetic and unique environmental factor structures
A = Additive genetic influences. E = Unique environmental influences. Common environmental influences (C), although not

presented here, are estimated as a Cholesky structure. Parameters with a subscript “s” notation represent variable specific

genetic and environmental influences. Values are presented as standardized parameter estimates. Parameter estimates with an

asterisk (*) are significantly greater than zero based on 95% confidence intervals.
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Table 1

Standardized variance components for individual cognitive tests

A (95% CI) C (95% CI) E (95% CI)

WASI Vocabulary .46 (.29; .62) .19 (.04; .34) .35 (.30; .41)

AFQT Vocabulary .39 (.24; .51) .11 (.01; .24) .50 (.44; .58)

WMS-3 Digit Span Forwards .44 (.26; .57) .12 (.01; .27) .44 (.38; .52)

WMS-3 Digit Span Backwards .33 (.16; .48) .13 (.00; .29) .54 (.48; .62)

WMS-3 Letter Number Sequencing .36 (.17; .54) .17 (.02; .35) .47 (.40; .53)

AFQT Box Folding .54 (.37; .63) .04 (.00; .19) .42 (.37; .49)

Hidden Figures .65 (.53; .74) .07 (.00; .18) .28 (.24; .33)

WASI Matrix Reasoning .36 (.18; .54) .18 (.03; .34) .46 (.39; .53)

DKEFS Trail Making Condition 2 .30 (.16; .41) .07 (.00; .20) .63 (.55; .70)

DKEFS Trail Making Condition 3 .32 (.14; .48) .11 (.00; .27) .57 (.49; .65)

A = Additive Genetic Influences. C = Common/Shared Environmental Influences. E = Unique Environmental Influences. Estimates were derived
from the full ACE Cholesky decomposition.
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