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Objective: Socioeconomic factors have been suggested
to influence the effect of education- and intelligence-as-
sociated genetic variants. However, results from previous
studies on the interaction between socioeconomic status
and education or intelligence have been inconsistent. The
authors sought to assess these interactions in the UK Bio-
bank cohort of 500,000 participants.

Methods: The authors assessed the effect of socioeco-
nomic deprivation on education- and intelligence-associ-
ated genetic variants by estimating the single-nucleotide
polymorphism (SNP) heritability for fluid intelligence, edu-
cational attainment, and years of education in subsets of
UK Biobank participants with different degrees of social
deprivation, using linkage disequilibrium score regression.

They also generated polygenic scores with LDpred and
tested for interactions with social deprivation.

Results: SNP heritability increased with socioeconomic dep-
rivation for fluid intelligence, educational attainment, and
years of education. Polygenic scores were also found to in-
teract with socioeconomic deprivation, where the effects of
the scores increased with increasing deprivation for all traits.

Conclusions: These results indicate that genetics have a
larger influence on educational and cognitive outcomes
in more socioeconomically deprived U.K. citizens, which
has serious implications for equality of opportunity.
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Potential interactions between socioeconomic factors and ge-
netic variants that are related to education and cognitive abili-
ty may have serious implications for millions of people in light
of the increases in income inequality across many of the in-
dustrialized nations over the past 30 years (1). Educational at-
tainment, measured either in years of education or whether
an individual has attended college or university, constitutes a
complex genetic trait that correlates with cognitive abilities,
such as intelligence. It is strongly linked to quality-of-life
measurements such as subjective well-being (2), paid employ-
ment (2), overall health (3, 4), mortality (5), and obesity (6). A
series of large-scale genome-wide association studies
(GWASs) (7–12), the most recent on 1.1 million participants
(11), have identified more than 1,000 independent educational
attainment–associated SNPs and estimated the SNP heritabili-
ty—that is, the proportion of phenotypic variance explained
by all SNPs included in a GWAS—at approximately 22% (12).

Findings from the most recent GWAS indicate the pres-
ence of gene-environment interactions (11). Genetic effect

sizes were found to differ between the cohorts that were
used for meta-analyses, and differences in SNP heritability
for educational attainment between cohorts were also re-
ported (11). For example, the SNP heritability was observed
to be larger in cohorts from countries where income in-
equality is larger (11), which suggests that socioeconomic
factors related to income inequality influence genetic effects.
This has also been studied in twin cohorts, in which both
higher (13–16) and lower (17) heritability has been reported
in children from less deprived backgrounds, whereas other
studies have found no detectable difference in heritability
across the socioeconomic gradient (18–20). These findings
are limited by relatively small sample sizes, and comparisons
between studies are further complicated by differences in
sample characteristics, such as participants’ age, year of
birth, and the like, as well as methodological differences
(see Table S1 in the online supplement).

In this study, we sought to leverage the large sample size
of the UK Biobank cohort to assess the interaction between
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socioeconomic deprivation and intelligence or educational
attainment. We used the Townsend deprivation index (TDI)
as a proxy for socioeconomic deprivation in UK Biobank
participants (Table 1). TDI scores incorporate data on em-
ployment, car and home ownership, and household over-
crowding and are generated for each U.K. national census
output zone (21). UK Biobank participants were assigned
TDI scores on their initial assessment according to their
residential postal codes and the most recent national cen-
sus. Educational attainment was assessed in all partici-
pants via touchscreen questionnaire. As a measurement of
intelligence, we used fluid intelligence assessments, which
were available for approximately 37% of all UK Biobank
participants.

METHODS

UK Biobank Cohort
The UK Biobank is a retrospective and prospective cohort
study of 502,492 citizens across the United Kingdom who
were recruited between 2006 and 2010. Ethical approval to
collect participant data was given by the North West Multi-
centre Research Ethics Committee, the National Information
Governance Board for Health and Social Care, and the Com-
munity Health Index Advisory Group. All participants pro-
vided signed consent to participate in UK Biobank.
Participants were 37–73 years of age at the time of recruit-
ment, and they provided biological samples as well as de-
tailed information via touchscreen questionnaire. To
minimize the effect of population stratification, we filtered

the cohort for participants who self-identified as British for
our analyses. Additional filtering included only participants
classified as Caucasian by principal component analysis
(data field 22006). Genetic relatedness pairing was provided
by the UK Biobank (data field 22011). We excluded related
individuals based on kinship data (estimated genetic rela-
tionship .0.044), individuals with poor call rate (,95%),
individuals with high heterozygosity (data field 22010), and
individuals with sex errors (data field 22001). After filtering,
data from 362,498 participants remained.

Educational attainment was assessed in the touchscreen
questionnaire by the question “Which of the following quali-
fications do you have?” (data field 6138). Participants could
respond “College or university degree,” “A levels/AS levels
or equivalent,” “O levels/GCSEs or equivalent,” “CSEs or
equivalent,” “NVQ or HND or HNC or equivalent,” “Other
professional qualifications, e.g., nursing, teaching,” “None of
the above,” and “Prefer not to answer.” Educational attain-
ment was coded as a binary variable (1 for participants who
reported having attended college or university and 0 for par-
ticipants who reported any other level of qualification). Par-
ticipants who preferred not to answer or who answered
“None of the above” were set as missing, resulting in
359,094 participants with informative data for analyses.
Years of education was inferred from the same variable, us-
ing an application of the International Standard Classifica-
tion of Education (ISCED-97) on the United Kingdom’s
educational qualifications (22). “College or University
degree” was coded as 20 years of education, “A levels/AS
levels or equivalent” as 13 years, “O levels/GCSEs or

TABLE 1. Characteristics of the full cohort and Townsend deprivation index quintiles of the UK Biobank cohort

Characteristic
Combined Cohort

(N5362,498)
1st Quintile
(N572,829)

2nd Quintile
(N572,843)

3rd Quintile
(N572,865)

4th Quintile
(N572,860)

5th Quintile
(N572,865)

N % N % N % N % N % N %

Female 195,067 53.9 38,825 53.3 39,020 53.6 39,358 54.0 39,644 54.4 37,984 52.1
College or

university
graduate

113,355 31.6 25,655 35.8 23,459 32.7 22,238 31.0 22,743 31.7 19,042 26.6

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Age (years) 56.9 8.0 57.3 7.8 57.4 7.8 57.1 7.9 56.5 8.1 56.0 8.2
Year of birth 1951 8.0 1951 7.8 1951 7.8 1951 8.0 1952 8.1 1952 8.2
Years of education 13.8 5.1 14.5 4.9 14.1 5.0 13.9 5.1 13.8 5.2 13.0 5.3
Townsend

deprivation
index

21.57 2.94 24.75 0.56 23.47 0.32 22.33 0.37 20.54 0.71 3.25 1.83

Fluid intelligence
score

6.22 2.10 6.42 2.03 6.31 2.05 6.24 2.07 6.30 2.12 5.91 2.20

N % N % N % N % N % N %

Fluid intelligence
score
questionnaire
responders

131,688 36.3 23,035 31.6 26,741 36.7 26,965 37.0 28,646 39.3 26,114 35.8

Professional
qualifications
questionnaire
responders

359,094 99.1 71,796 98.6 71,751 98.5 71,767 98.5 71,817 98.6 71,528 98.2
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equivalent” as 10 years, “CSEs or equivalent” as 10 years,
“NVQ or HND or HNC or equivalent” as 19 years, “Other
professional qualifications, e.g., nursing, teaching” as 15
years, and “None of the above” as 7 years, resulting in
362,498 participants with informative data on years of
education.

Fluid intelligence scores (data field 20016) for each par-
ticipant were estimated through a battery of 13 questions
given via touchscreen questionnaire (see Table S2 in the on-
line supplement). Participants were given 2 minutes to an-
swer as many questions as they were able to. Participants
were also able to skip questions. Fluid intelligence scores
were calculated as the unweighted sum of the number of
correct answers given to the 13 questions, and thus ranged
from 0 to 13. Questions that remained unanswered after the
allotted 2 minutes were scored as zero. In total, 165,471 par-
ticipants completed the fluid intelligence test at the assess-
ment centers. After filtering, fluid intelligence scores were
available for 131,688 participants. Fluid intelligence was also
assessed remotely via a web-based questionnaire (data field
20191), where an additional question was included. A total
of 123,651 participants took the web-based test, of whom
46,699 had already performed tests at the assessment cen-
ters. We elected to use only the results from the assessment
center tests, since these tests were undertaken under more
controlled conditions and were administered to the largest
number of participants.

Information on the participants’ socioeconomic status
was available via the TDI, which is a measure of material
deprivation that is based on unemployment rates, non–car
ownership, non–home ownership, and household over-
crowding. A higher index corresponds to a higher degree of
deprivation, which is analogous to lower socioeconomic sta-
tus. Data for the TDI were collected during the national
census and calculated for each census output area. Partici-
pants were scored using data from the preceding national
census and were assigned a score according to the output
area in which their postal code is located. The cohort was
stratified into quintiles based on TDI (Table 1).

Genotyping
Genotyping of UK Biobank participants had been performed
on two genotyping microarrays, the UK BiLEVE and UK Bi-
obank Axiom genotyping arrays. Approximately 50,000 sam-
ples were genotyped on the UK BiLEVE array and
approximately 450,000 samples on the Axiom array, which
both genotype approximately 850,000 variants. The two ar-
rays are highly similar, with .95% overlap. SNPs had been
imputed up to a total of 97,056,775 genetic variants. SNPs
were filtered for .0.01% minor allele frequency, no devia-
tion from Hardy-Weinberg equilibrium (p.10220), and per-
variant and per-sample missing genotype rates ,5%. After
filtering, 34,453,499 SNPs were included for analyses. How-
ever, only a subset of these variants was used for subsequent
analyses, as described below.

Genome-Wide Association Studies
Association tests for all traits were performed with PLINK,
version 1.90b3n (23). Association of SNPs with fluid intelli-
gence scores and years of education was modeled using line-
ar regression. Age, sex, a batch variable for the two
genotyping arrays used in the UK Biobank, and 15 principal
components were included as covariates. Associations be-
tween SNPs and educational attainment were tested with lo-
gistic regression modeling, since educational attainment was
coded as a binary variable. The same covariates as in the lin-
ear regression models were included. The cohort was strati-
fied into quintiles by TDI, and GWASs were performed
separately for each trait in each quintile. GWAS was also
performed for each trait in the combined cohort, that is, all
TDI quintiles together.We also performed a GWAS for TDI,
using the same covariates as above, in order to generate
summary statistics for genetic correlation.

SNP Heritability and Genetic Correlation
SNP heritabilities and genetic correlations between traits
and strata were estimated using LDSC, version 1.0.0 (24).
Linkage disequilibrium (LD) scores from 1000 Genomes Eu-
ropean data (downloaded from https://data.broadinstitute.
org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2) were used
to weight regression coefficients for correlated SNPs in the
LD score regression analyses. SNP heritabilities were esti-
mated for each trait in each TDI quintile as well as for each
trait in the full cohort.

Polygenic Scores
Previous studies on gene-environment interactions have
demonstrated that interaction effects of individual SNPs are
generally small, which makes them difficult to detect, even
with large sample sizes (25). In contrast, polygenic scores
provide a good opportunity for interaction analyses, as they
are able to aggregate the effects of many SNPs into one vari-
able. Therefore, polygenic scores for educational attainment,
years of education, and fluid intelligence were estimated
with LDpred, version 0.9.9 (26). First, we filtered for SNPs
included in HapMap v3 (N51,217,311), which are commonly
well imputed. The UK Biobank cohort was randomly split
into a training (33%) and a testing (67%) set.We used a larg-
er testing set to increase the likelihood of detecting statisti-
cally significant differences between quintiles.

We performed a GWAS for each trait in the training set
to estimate the effect for each SNP.We then used LDpred to
coordinate the GWAS summary statistics with the genotype
data for a reference sample of 5,000 randomly selected un-
related Caucasian UK Biobank participants who self-re-
ported as British. In this step, SNPs are filtered for allele
frequency (minor allele frequency .1%) and SNPs with am-
biguous or nonmatching nucleotides between the GWAS
summary statistics and the reference sample are removed.
After filtering, 930,923 SNPs remained for fluid intelligence
and 1,142,611 SNPs remained for educational attainment and
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years of education. In a second step, LDpred was used to
calculate LD-based weights for the effect of each SNP. This
step requires specification of a window around each SNP,
given in number of SNPs, as a basis for LD adjustment. As
recommended by the authors of the LDpred program (26),
we specified an LD window of approximately 1,000 kilo-
bases, which corresponds to an LD radius of M/3000, where
M is the number of SNPs used for the analyses. This re-
sulted in an LD radius of 310 for fluid intelligence and 380
for years of education and educational attainment.

LDpred was then used to calculate posterior means of ef-
fects that are conditional on the LD pattern of the reference
data set, as well as a genetic architecture prior. The prior has
two parameters: the heritability explained by the genotypes,
which is estimated from GWAS summary statistics, and the
fraction of causal markers (rho), that is, the fraction of
markers with nonzero effects. The fractions of causal markers
are unknown for the traits in this study. As a default, LDpred
calculates posterior means based on seven different values for
rho: 1.0, 0.3, 0.1, 0.03, 0.01, 0.003, and 0.001. The optimal rho
can then be selected according to the performance of the
polygenic scores in the training set. For fluid intelligence score
and years of education, the most optimal model was deter-
mined by comparing how linear models improved when the
polygenic score was added.This was performed by calculating
the squared semipartial correlation coefficients (DR2) for line-
ar models that included each score as well as sex, age, TDI, a
batch variable for the two genotyping arrays that were used in
UK Biobank, and 15 principal components. For educational at-
tainment, which was coded as a binary trait, the score with
the best discriminatory capacity was determined by calculat-
ing the area under the receiver operating characteristic curve,
using the same covariates and the pROC package (27) in R.
Optimal models were achieved at rho50.03 for all three traits
(see Tables S3–S5 in the online supplement). Allelic scoring of
the remaining 67% of participants who were not included in
the GWAS was then performed with PLINK using the
“2score” function and the SNP weights from the LDpred
model with rho50.03.

Gene-Environment Interaction Analyses
Gene-environment interactions were tested with regression
modeling in R, version 3.5.1 (28), using the glm function.
Linear regression was used for modeling fluid intelligence
score and years of education, and logistic regression model-
ing was used for educational attainment. Educational attain-
ment, fluid intelligence, or years of education was set as the
response variable. Polygenic scores, age, sex, TDI, a batch
variable, and 15 principal components were included as co-
variates. Each model also included terms for interactions be-
tween all covariates in accordance with recommendations
by Keller (29). Three traits were tested, and a p value
,0.017 (0.05/3) was considered significant.

We also tested for interactions between TDI and individ-
ual SNPs for educational attainment, despite the limited

power to detect gene-environment interactions for individu-
al SNPs.We elected to use results for educational attainment
for these analyses, since the GWAS on educational attain-
ment in the combined cohort yielded the largest number of
genome-wide significant SNPs (N5188; p,53 1028). Lead
SNPs were tested for interaction with TDI using PLINK,
version 1.90b3n, with the “2interaction” flag, which per-
forms multiple linear regression modeling of models that in-
clude SNP-by-covariate interaction terms. b estimates for
SNP-by-TDI interaction terms that were generated from
these models were tested for deviation from zero using Stu-
dent’s t test. Bonferroni correction was used to adjust for
multiple testing, and p values ,2.73 1024 (0.05/188 SNPs)
were considered significant.

Sensitivity Analyses: Resampling of TDI Subgroups
With Similar Mean Polygenic Scores
A difference in mean polygenic scores was observed be-
tween TDI quintiles (see Table S6 in the online supple-
ment). To ensure that such differences would not drive the
relative change in estimated heritability between quintiles,
we performed a set of sensitivity analyses. We resampled
TDI-stratified subsets so that all subsets had a similar poly-
genic score. First, we defined a density function, fT (t), com-
mon to all polygenic scores such that

fTðtÞ ¼ A3min
�
fX1ðtÞ, fX2ðtÞ, . . . , fXnðtÞ

�
,

where t in the support ST 5 {t 2 R : fT (t) . 0}, fXk
(t), k 5

1,… ,n denotes the density function that describes the distri-
bution of the polygenic score in the kth n-quantile of TDI,
and where A is a renormalization constant. It is assumed
that the support for all density functions is equal, such that
SX1 5 … 5 SXn 5 ST. We stratified the cohort by TDI into
three parts (see Table S7 in the online supplement). Three
parts were chosen in order to attain similar sample sizes af-
ter resampling, as in the primary analyses with five quin-
tiles, and thus conserve statistical power. In practice, the
resampling was performed as follows: First, we created
three histograms from the polygenic scores of each TDI ter-
tile by dividing the range in polygenic score in a number of
bins with bin size 0.01, and counted the number of individu-
als in each bin. By definition, there is an equal number of in-
dividuals in each TDI tertile, so no normalization was
needed. Second, we selected the minimum number of indi-
viduals in each bin by comparing the three histograms using
the pmin() function in R, version 3.5.3. The resulting histo-
gram corresponds to the common density function, defined
above. Third, we randomly removed individuals from each
of the three original TDI subsets such that the number of
remaining individuals in each resampled subset matched the
number of individuals in the common histogram. This re-
sampling was performed using the sample() function in R,
without replacement, and resulted in three TDI subsets
with equal distributions in polygenic score. About 5%26%
of individuals were removed by this procedure, depending
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on the trait. Finally, GWAS was performed in each subset,
and the summary statistics were used to estimate SNP heri-
tability similarly to the primary analyses.

Sample Truncation Bias Due to Stratification on TDI
The observed difference in distribution (mean, variance,
etc.) of polygenic scores between TDI quintiles (see Table
S6 in the online supplement) may partly be a manifestation
of possible sample truncation bias (30). This type of bias oc-
curs when stratification is performed on the outcome or on
a variable that is affected by the outcome. In our analyses,
we stratified by TDI, which may be affected by the outco-
me—for example, educational attainment. Sample truncation
bias may result in attenuated main effect estimates. If the
cohort is stratified on the outcome, this would lead to a
truncated error term (30). Hence, the distributions of the
model residuals in the different strata should both differ
from each other and deviate from the distribution of the un-
stratified residuals, that is, in the presence of sample trunca-
tion bias. In order to test this, we regressed the outcome
variables on the polygenic score in each quintile of TDI and
in the unstratified sample, with the same covariate terms as
in the full models, excluding all main and interaction terms
with TDI, and compared the corresponding residuals.

Collider Bias Due to Pleiotropic Effects
Stratification of the UK Biobank cohort on the basis of TDI
could potentially result in collider bias (31), since TDI is as-
sociated with both the cognitive ability trait and the poly-
genic score for that trait. TDI may be considered a collider
in our model if educational attainment and the polygenic
score for educational attainment both independently and di-
rectly influence TDI. But this would require that the SNPs
in the polygenic score show horizontal pleiotropy, that is,
that they are associated with both TDI and educational at-
tainment, but through independent causal pathways (32).

Methods to test for horizontal pleiotropy in an ensemble
of SNPs have been developed for Mendelian randomization
analyses.We used the HEIDI-outlier approach, which is im-
plemented in the Mendelian randomization package gsmr
(33), to identify pleiotropic SNPs. This method requires a set
of robustly associated SNPs, rather than all SNPs used to
construct the polygenic score from LDpred. We therefore
used a previous GWAS on educational attainment in 1.1 mil-
lion participants (11) to select and extract summary statistics
for 1,207 independent SNPs (R2,0.1) that were significantly
associated (p,53 1028) with educational attainment. We
then estimated the corresponding effects of these SNPs on
TDI in the UK Biobank and checked for pleiotropic outliers
by running gsmr (33) with the HEIDI-outlier analysis flag
set to “true.” Of the 1,207 original SNPs, 61 were found to be
horizontally pleiotropic outliers by the HEIDI-outlier
analysis (see Figure S1 in the online supplement). We re-
moved those 61 SNPs and generated a polygenic score
from the remaining 1,146 nonpleiotropic SNPs. We then

estimated both the effects of the collider-free polygenic
score on educational attainment in each TDI quintile of
the UK Biobank and the interaction effect between the
polygenic score and TDI, similarly to the primary analy-
ses. For comparison, similar analyses were performed for
a polygenic score generated from all 1,207 SNPs.

Statistical Analysis
The change in SNP heritability with TDI quintiles for the
three traits was assessed by simple linear regression: h2 �
TDI, assuming homoscedastic errors in heritability. The
mean TDI was taken as the representative values for TDI in
each quintile. The p value for the trend in heritability was
given by the p value for the estimated slope (Student’s t
test). A binomial test was used to calculate the probability
for at least the observed number of SNPs with a nominally
significant interaction term, given the null hypothesis of no
interaction.

RESULTS

Genome-wide association analyses were performed for edu-
cational attainment, years of education, and fluid intelligence
in five UK Biobank subgroups, stratified into quintiles based
on TDI (Table 1), as well as in the combined cohort. The
summary statistics from each GWAS were used to estimate
SNP heritabilities and genetic correlations. Across TDI quin-
tiles, SNP heritabilities ranged from 21.6% to 31.0% for fluid
intelligence score, 13.4% to 26.4% for educational attain-
ment, and 13.8% to 24.3% for years of education (Figure 1).
SNP heritabilities for all three traits were observed to in-
crease with socioeconomic deprivation (fluid intelligence: p
for trend58.293 1024; educational attainment: p56.203
1023; years of education: p51.073 1022) (see Figure 1; see
also Table S8 in the online supplement).

Strong genetic correlations were observed between quin-
tiles within each trait (see Table S9 in the online supple-
ment). Correlations between the fifth quintile and both the
first and second quintiles for educational attainment and
years of education were below unity (see Table S9), which is
consistent with the imperfect genetic correlations and differ-
ences in heritability that were reported between cohorts
with different levels of income inequality in the recent
GWAS on 1.1 million participants (11).

Genetic correlation between educational attainment and
years of education was approximately unity (see Table S10
in the online supplement), which is expected, since both
variables are derived from the same underlying question-
naire data. Both traits are nonetheless included in our analy-
ses, as they both frequently occur in the literature on
education and genetics.

Polygenic scores were observed to interact with TDI for
educational attainment (p51.083 10210), years of education
(p51.93 10212), and fluid intelligence (p51.103 1024),
where the effect of the polygenic scores increased with
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socioeconomic deprivation for all traits (Figure 2; see also
Tables S11–S13 in the online supplement), which is consis-
tent with the observations of increasing SNP heritability
with social deprivation.

In addition to investigating the interaction between poly-
genic scores and TDI, we also tested for the interaction be-
tween individual SNPs and TDI for educational attainment.
In the combined-cohort GWAS for educational attainment,
we identified 188 genome-wide significant lead SNPs that
were tested for interaction with TDI.We were unable to ob-
serve any significant interaction after Bonferroni correction.
However, evidence of interaction at the nominal level was
observed for 25 SNPs (see Table S14 in the online supple-
ment), which is a larger number than would be expected by
chance (binomial test, p58.93 1026). These results suggest
that there is an underlying pattern of interactions, but that
the power to detect individual interactions is limited when
SNPs are investigated individually.

Sensitivity Analyses
Small differences in the mean value and distribution of poly-
genic scores between TDI quintiles was observed (see Table
S6 in the online supplement). These differences may

potentially introduce bias in our heritability estimates as a
result of truncation of the outcome variable caused by the
stratification on TDI (30). However, by resampling TDI-
stratified subsets of UK Biobank participants with similar
mean and distribution of polygenic scores (see Table S7 in
the online supplement), we found that the SNP heritabilities
were still higher with higher TDI, consistent with the re-
sults from the primary analyses (see Figure S2 in the online
supplement). We therefore conclude that the observed dif-
ferences in heritability between quintiles were not caused
by differences in polygenic score between quintiles. More-
over, the distributions of the model residuals for all TDI
quintiles were found to closely resemble those for the un-
stratified sample (see Figures S3–S5 in the online supple-
ment), which indicates that all error distributions are
similar. Any sample truncation bias (30) due to stratification
on TDI should therefore be limited in our analyses.

We were concerned about obtaining biased interaction
effects when we stratified by TDI as a result of collider bias.
In our analyses, genetic correlation was present between
TDI and our phenotypes of interest. The strongest correla-
tion was between TDI and educational attainment (see Ta-
ble S10 in the online supplement). While a genetic

FIGURE 1. Heterogeneity of SNP heritability for fluid intelligence and educational attainment across socioeconomic deprivationa

Townsend Deprivation Index

–6 –4 –2 0 2 4 86

Socioeconomic deprivation

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

8,000

12,000

4,000

0

F
re

q
u

e
n

c
y

h
2

Fluid intelligence

Educational attainment

Years of education

a The estimated single-nucleotide polymorphism (SNP) heritabilities (h2) (with 95% confidence intervals) for fluid intelligence, educational attainment, and
years of education are plotted for each Townsend deprivation index (TDI) quintile. The histogram illustrates the distribution of TDI scores in our sample,
and the different shading denotes TDI quintiles. The dotted lines indicate the combined h2 for each trait, which was estimated in the combined cohort.
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correlation could be due to vertical pleiotropy (SNPs acting
through the same causal pathway), correlation due to hori-
zontal pleiotropy (SNPs acting through different pathways)
is of primary concern for collider bias. When a subset of
1,207 lead SNPs for educational attainment from a previous
GWAS (11) were investigated, only 61 were found to be hori-
zontally pleiotropic outliers (see Figure S1 in the online sup-
plement), which suggests that these SNPs could affect TDI
by independent pathways and make TDI a collider when
these SNPs are included in the polygenic score. However,
the remaining 1,146 SNPs did not show any evidence of hor-
izontal pleiotropy, and the effects among the TDI quintiles
of a “collider-free” polygenic score that only included these
1,146 SNPs showed no significant difference compared with
a polygenic score that also included the 61 potentially pleio-
tropic SNPs (see Table S15 in the online supplement). Signif-
icant interactions with TDI were observed for both
polygenic scores, similar to what was observed for the pri-
mary polygenic score from LDpred. This suggests that the
interaction effect is not driven by collider bias and that our
results are robust and remain valid.

DISCUSSION

In our analyses, the effects of educational attainment- and
fluid intelligence–associated genetic variants differ by degree
of socioeconomic deprivation. This results in higher herit-
abilities for these traits in participants from more socially
deprived areas of the United Kingdom. The results are con-
sistent with the diathesis-stress model (17), in which low so-
cioeconomic status represents a more challenging
environment during childhood and adolescence, which in-
teracts with individuals’ genetic predispositions for

educational attainment and cognitive ability through gene-
environment interactions. According to this model, a socially
deprived individual’s genetic predispositions for educational
attainment and fluid intelligence have a larger role on out-
comes, in comparison with individuals from a more support-
ive environment.

The results from this study contrast with those from
twin studies that have demonstrated an increase in heritabil-
ity for cognitive abilities with higher childhood socio-
economic status (13–16, 34) (see Table S1 in the online
supplement), which is in the opposite direction of what we
observed here. However, several twin studies were unable
to replicate this interaction (16–20, 35). A recent meta-analy-
sis that aimed to resolve this discrepancy (36) showed that
studies of twins in the United States were almost consistent
in being able to demonstrate increasing heritability for intel-
ligence-related traits with childhood socioeconomic factors,
such as level of parental education and income. In contrast,
studies of western European or Australian populations were
consistent in not being able to report any gene-environment
interactions, with one exception: a study of Dutch adoles-
cent twins found higher heritability for cognitive ability in
children from mothers with lower levels of education (37),
which is consistent with the findings of our study. National
differences thus appear to play a role in moderating interac-
tion effects between genetic factors and intelligence-related
traits. Possible reasons for this discrepancy between the
United States and other countries include differences in ac-
cess to and quality of education across the socioeconomic
spectrum, as well as differences in access to welfare support
systems and access to and affordability of health care. In ad-
dition, pedagogical interventions that are more common in
the United States, such as aptitude testing and selection of

FIGURE 2. Effect estimates of polygenic scores in each Townsend deprivation index quintile for fluid intelligence, educational
attainment, and years of educationa
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a The effects of the polygenic scores were assessed with regression modeling. The bars illustrate the effects (b coefficients) of the polygenic scores in
each Townsend deprivation index (TDI) quintile, that is, the effect on the trait of a one-unit increase in polygenic score. Error bars denote 95% confi-
dence intervals of the mean. TDI quintiles are ordered from low deprivation (1st quintile) to high deprivation (5th quintile). A one-standard-deviation in-
crease in the polygenic score is associated with about a one-standard-deviation increase in number of years of education and fluid intelligence,
respectively. For educational attainment, b estimates are equal to the natural logarithm of the odds ratio and can be converted to odds ratios by com-
puting eb. This means that effects in the range of 0.4 to 0.5 correspond to odds ratios of about 1.50 to 1.65.
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children for gifted and talented programs and specialized
high schools, may also influence the effect of genetic var-
iants and lead to differences in heritability across the socio-
economic spectrum.

Educational attainment has previously been shown also
to be influenced by the environment within a family, an ef-
fect that is separate from the genetic variants that are inher-
ited. In a recent study, it was even shown that both
transmitted (nature) and nontransmitted (nurture) parental
genetic alleles affect the educational outcome of offspring
via the family environment (38). Whether nurture effects
also depend on socioeconomic factors is less clear. However,
interactions between nurture and socioeconomic factors
could possibly contribute to part of the interaction effects
that were observed in our study.

In contrast to previous studies, this is the first to use
summary statistics from GWASs from a cross-sectional co-
hort to study the interaction between socioeconomic factors
and education- and intelligence-associated genetic variants.
This has enabled a manyfold increase in sample size, which
should result in more confident results compared with pre-
vious studies. However, our results would benefit from being
replicated in an independent cohort. Examining these ef-
fects in a large cohort of U.S. participants would also allow
for confirmation of possible contrasts between the United
States and other countries. However, because of the use of
GWAS summary statistics, we restricted our analyses to
common SNPs and SNPs that are known to be of high im-
putation quality. It is possible that rare genetic variation and
de novo mutations also interact with socioeconomic factors.
Previous studies have shown, for example, that the enrich-
ment of ultra-rare damaging mutations in conserved genes
is associated with having fewer years of education (39).
However, because of the bias toward common variants on
the genotyping arrays in the UK Biobank, we were not able
to address the effect of rare variants in our study.Whole ge-
nome sequencing is now performed in many studies and
will be a valuable resource for further quantification of
gene-environment interactions of rare or even family-specif-
ic variants.

A limiting factor in this study is the lack of information
on UK Biobank participants’ socioeconomic deprivation dur-
ing childhood and adolescence, which is the most critical
period for educational attainment and cognitive develop-
ment. The TDI scores that we used as a measure of the par-
ticipants’ socioeconomic situation were based on the most
recent national census before participants were interviewed,
and their correlation with socioeconomic deprivation during
childhood and adolescence may be limited because of the so-
cial mobility of UK Biobank participants. A study performed
in 1972 (40) showed that approximately 50% of U.K. citizens
born between 1938 and 1947 ended up in a different class of
employment from their parents. The median year of birth for
UK Biobank participants is 1950. However, social mobility
has also been observed to differ depending on the social

class to which an individual is born (41). A recent combined
study of four British birth cohorts, from 1946, 1958, 1970,
and 1980–1984 (41), showed that children of parents with
professional or managerial positions were more likely to
end up in the same social class as their parents, in compari-
son with children of working-class parents. The observed
heterogeneity of heritability between TDI quintiles is there-
fore likely to partially correlate with socioeconomic depriva-
tion during childhood and adolescence, particularly in low-
deprivation segments of society where social mobility has
been observed to be lower (41). In addition, a “healthy vol-
unteer” bias has also been documented in the UK Biobank
(42), which led to a slightly skewed distribution of phenotypic
and demographic traits. For example, UK Biobank partici-
pants are generally leaner and less likely to be smokers com-
pared with the general population of the United Kingdom.
The rate of participation was also higher among women, old-
er age groups, and persons living in less socioeconomically de-
prived areas (42). The observations reported in this study are
not likely to have emerged as a result of this bias. However,
quantitative estimates such as prevalence, incidence, and ef-
fect sizes of individual SNPs and interactions may not be di-
rectly generalizable to the U.K. population.

CONCLUSIONS

The results from our study imply that socioeconomic dep-
rivation interacts with human biology to magnify the ge-
netic effects on educational and cognitive outcomes. Even
though this study was performed in a cohort from the United
Kingdom, the results may generalize to other countries with
similar socioeconomic gradients and systems of education. Of
course, socioeconomic deprivation is associated with an ar-
ray of factors that may be causal for the interactions ob-
served in this study, such as high stress (43), poor diet (44,
45), higher rates of childhood obesity (46), substance abuse
(47), mental illness (48), poor access to health care (49), and
lower-quality schools (50). The effects of these factors may
also be compounded by national or municipal policies relat-
ed to funding for welfare and social services. Regardless of
which factors are causal, socioeconomic deprivation consti-
tutes a modifiable environmental factor that can be alleviat-
ed through social policies.
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