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Abstract 

Recent research has provided strong demonstrations to the effects that education improves 

scores on intelligence tests. We tested whether the improvements elicited by education were 

consistent with raised intelligence or enhancements to specific skills involved in intelligence 

testing. We used the structural equation models from Ritchie, Bates & Deary (2015) on a 

longitudinal sample of over 4,000 American men who took an intelligence test near the end of 

high school and then took another around 37 years of age. Our results were consistent with 

theirs in that we found that the effect of education on intelligence test scores was not an 

improvement to intelligence itself, but instead was relegated to improvements to specific skills. 

Our results support the notion that education is not a source of enhanced intelligence, but it can 

help specific skills. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Lasker & Kirkegaard 2 
 

Introduction 

 Education is related to intelligence1, whether education is conceptualized as scores on 

measures of academic achievement (Zaboski et al., 2018), grades (Cucina et al., 2016), or simple 

years of education completed (Strenze, 2007). There is considerable evidence that intelligence is 

a causal factor in educational attainment. For example, intelligence measured early in life 

predicts subsequent educational attainment (Butler et al., 1985; Deary et al., 2007; Fergusson et 

al., 2005), when comparing identical twins the more intelligent twin tends to achieve a higher 

level of education (Johnson et al., 2006; Sandewall et al., 2014; Stanek et al., 2011), and when 

children are more intelligent than their parents the same is true and vice-versa for children who 

perform worse than their parents (McGue et al., 2020). On the other hand, there is a great deal of 

evidence that education improves scores on intelligence tests (Ritchie & Tucker-Drob, 2018) and 

there are trends in educational attainment that transcend differences in intelligence (McGue et 

al., 2022). 

 Bidirectional causation for the link between education and intelligence is both possible 

and plausible: longitudinal studies, twin-, sibling-, and parent-controls, and a variety of 

behavior-genetic models support causal effects of intelligence on educational attainment, while 

natural experiments aplenty have shown that intelligence test scores are positively affected by 

increased schooling. Intelligent people may seek more cognitively demanding and stimulating 

environments, pushing them towards higher education, while individuals who are more 

educated may be more cognitively stimulated and thus develop greater intelligence. However, 

the bidirectional nature of the linkage between intelligence and education is contentious (Deary 

& Johnson, 2010). 

 An important angle for investigating this link is to assess if education affects changes in 

intelligence or in scores alone. This distinction is important, as scores on intelligence tests are 

trivially malleable. A researcher interested in increasing test scores could undertake an 

intervention to provide test takers with answers to test questions, considerably elevating their 

scores without raising their intelligence whatsoever. This distinction hinges on the difference 

between latent variables underlying test performance – like intelligence – and the scores used to 

measure them (Borsboom, 2006). If an intervention affects an intelligence test score, it is not 

immediately apparent if that means intelligence the construct has been impacted.2  

 The typical course of action when evaluating the effect of something on intelligence is to 

compare scores before and after an exposure (Haier, 2014). Such a procedure does not actually 

constitute evidence brought to bear on the question of whether and how much intelligence is 

affected by something. More methodologically inclined researchers have sought to use the 

 
1 Also referred to as g, or general intelligence. 
2 When an intervention affects a construct and thus test scores are consistent with all causes of 

performance covariation being mediated by said construct, that condition is known as measurement 

invariance. 
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effects of cognitive training, brain lesions, and educational interventions, analyzed at the latent 

level and with respect to various theoretically-informed models, to probe the nature of 

intelligence, assess its structure, and to evaluate if intelligence itself is altered when scores are 

(Protzko, 2017; Protzko et al., 2021; Protzko & Colom, 2021). Research on educational effects on 

intelligence has typically embodied the former variety of investigation, with focus levied on 

scores rather than constructs. There is, however, one exception, a study by Ritchie, Bates & 

Deary (2015).  

 Ritchie, Bates & Deary (henceforth RBD) leveraged a large (n = 1,091) longitudinal 

sample whose intelligence was measured at ages 11 and 70 to assess whether years of education 

affected intelligence or specific abilities, like logical memory, spatial reasoning, or vocabulary. If 

education affected intelligence, it was noted, effects “would be apparent in all the cognitive 

capacities associated with g, and, thus, should raise all mental abilities in proportion to their 

loading on g.” (ibid., p. 574). The method these researchers used to test how educational effects 

on intelligence worked was elegant in its simplicity. They posited three competing models: one 

in which education affected intelligence alone, one where it affected intelligence and 

performance on specific tests, and one where it only affected specific tests and intelligence was 

not impacted. They found that a model in which only specific tests were influenced fit best. 

 Their method was admirable, and their results deserve to be replicated to further clarify 

the nature of the complex relationship between intelligence and education, but data that can be 

applied to that end is rare. Moreover, their study can be criticized on several grounds. Firstly, 

their measure of intelligence at age 11 was a singular score rather than several scores, so their 

measure of early intelligence is not latent intelligence, it approximates it. Secondly, their sample 

was based out of the United Kingdom, so it is unknown if it will generalize to different cultures. 

And third, standards for sample sizes have grown in recent years due to the influence low 

statistical power has on the likelihood a study’s results can be replicated; by more 

contemporary standards, some could argue their sample was too small, and the effects of 

education – specific or general – may have thus been discounted because of their statistical 

nonsignificance. 

The Present Study 

 Here, we report a large, well-measured, international replication of RBD’s seminal work 

in a CDC archival dataset (the Vietnam Experience Study, or VES) containing data from over 

4,000 men who were given a battery of tests in early adulthood (19.92 years, SD = 1.72) and 

reassessed some twenty odd years later with a larger battery (37.43 years, SD = 2.52). The 

unique qualities of this dataset – large sample size, its longitudinal nature, its socially and 

developmentally meaningful timing, and its excellent test batteries – afforded us an excellent 

opportunity to investigate the stability of intelligence in the transition from early adulthood to 

midlife, the effects of education on intelligence, and the contribution of educational effects on 

intelligence to another measure (or component) of social status, income.  



Lasker & Kirkegaard 4 
 

 Our first research question regarded the stability of intelligence. We wanted to know 

how stable intelligence was going from early adulthood to midlife. We contrasted three models 

for this. In each model, intelligence, as measured at the outset of data collection, and as 

measured at the follow-up were modeled, with one parameter distinguishing the models: the 

correlation between intelligence at different timepoints. The first model forced intelligence to be 

perfectly stable (i.e., Pearson’s r = 1), the next to be perfectly unstable (r = 0), and in the last, the 

parameter was freed and allowed to take any value.  

Research on the stability of intelligence across the lifespan has almost universally 

focused on the stability of fullscale IQ (FSIQ) scores, individual scale scores, or principal 

component scores (Ahmed et al., 2020; Deary, 2014; Gow, 2016; Larsen et al., 2008; Lechner et 

al., 2021; Mansukoski et al., 2019; Schalke et al., 2013; Watkins & Canivez, 2004; Watkins & 

Smith, 2013). The exceptions are notable, as they reveal a major problem with approaches that 

do not use latent variables: due to some combination of unreliability and dimensionality, the 

stability of intelligence has been underestimated in studies that only used observed scores 

(Rönnlund et al., 2015; Yu et al., 2018).  

To help alleviate this gap, we also compared the stability of our FSIQs to the stability of 

latent intelligence. We were able to provide considerable analytic leverage to this question 

because, while the tests administered in early life and midlife were not all identical, some of 

them were. The common tests between time periods were highly correlated with one another 

(same test r’s= 0.785 and 0.842), so we can take the knowledge that composite score reliability 

exceeds the reliability of individual subtests and use these as lower bounds for the reliability of 

our FSIQ measure to test whether differences in FSIQ and latent intelligence stability could 

plausibly be the result of random error. This procedure does affirm the consequent, so we 

consider them to be of secondary importance and worthy of serious qualification. Related to this 

analysis, in the process of the convergent validation of test scores, Floyd et al. (2013, p. 397) 

noted that IQ scores – which primarily represent intelligence – were less correlated than factors 

representing latent intelligence, but the discrepancy was too large to have been accounted for by 

reliability, implicating a role for non-general dimensionality in FSIQs that, we believe, is likely 

to also play a confounding role in analyses of the stability of intelligence, since it is also known 

that intelligence is more stable than specific abilities (Breit et al., 2021; Larsen et al., 2008; Plomin 

et al., 1994; Watkins & Canivez, 2004), and the influence of both is subsumed into broad 

sumscores like FSIQs. 

Our second research question was about our exact replication of RBD’s (2015) study. We 

wished to assess whether educational effects on intelligence test scores were due to one of three 

possibilities that they also tested. The first, their model A, is one in which education affects 

intelligence directly, and that is how education affects intelligence test results. The second, their 

model B, is one in which education affects both intelligence and specific tests, such that 

education is both a broad cognitive enhancer and a pathway to enhancements in terms of 

specific skills like vocabulary or arithmetic. The third, their model C, is one in which education 
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does not impact intelligence but, instead, impacts only specific subtests. This model features 

improved intelligence test scores, but not improved intelligence. We mimicked their procedure 

and hypotheses exactly: “We tested which models had better fit and predicted that, if education 

improves intelligence by raising g, either or both of models A and B would have significantly 

better fit to the data than Model C.” (ibid., p. 575).  

Our third and final research question was an attempt to answer the fifth question asked 

by Ritchie & Tucker-Drob (2018). This question is as follows: “[H]ow important are these 

[causal] effects [of education on intelligence test scores]? There is strong evidence from 

industrial and organizational psychology and cognitive epidemiology studies that IQ is 

associated with occupational, health, and other outcomes, but to our knowledge, no studies 

have explicitly tested whether the additional IQ points gained because of education themselves 

go on to improve these outcomes. A quasiexperimental study… found that raising the school-

leaving age improved not only IQ but also a variety of indicators of health and well-being. It is 

possible that the educational benefits to the upstream variables were partly mediated via the IQ 

increases (or vice versa), but this would need explicitly to be investigated.” (ibid., p. 10).  

To address this problem, we considered it within the context of a structural equation 

model involving intelligence measured early in life, education, and intelligence measured later 

in life. Educational effects would be allowed to land where they would – on specific tests, 

intelligence, or any combination thereof – but, in one model, the direct path from education to 

income would be present, and in the other, it would remain unmodeled. If the regression 

coefficients with respect to income for variables affected by education remain unchanged 

regardless of model, then the effect of education on income is unmediated by its cognitively 

salubrious effects. If, on the other hand, educational effects on income are mediated by its 

effects on intelligence or specific tests, then the explicit inclusion of education should 

substantially reduce the degree to which affected variables relate to income.  

This assessment is considered less strongly than the other two because each variable 

could be related to income independently and the effects of education may be minute, so our 

ability to render a powerful conclusion here is more greatly circumscribed due to the need for 

higher statistical power to reliably provide any answer. Moreover, income, though highly 

correlated from year-to-year in adulthood, was based on income in the year prior to testing. We 

are only presenting this analysis as a first attempt at assessing whether educational effects on 

socioeconomic attainment, in the form of income, are mediated by cognitive enhancement. 
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Method 

Participants 

 Participants were members of the VES, the full details of which can be obtained from the 

CDC.3 The VES is a population-representative cohort, excepting individuals who scored below 

the 10th percentile in initial testing. Members of a randomly selected subset of the larger sample 

of 15,288 men were subjected to extensive medical examination, interviews, and 

neuropsychological evaluations and studied specifically to assess the effects of service in the 

Vietnam War, since a large portion of that sample (2,490) were Vietnam veterans, and the rest 

(1,972) were not. As noted by the CDC (footnote 3), there were few differences between these 

groups excepting problems including “depression, anxiety, and combat-related post-traumatic 

stress disorder.” Since the sample was screened with intelligence tests and individuals below 

the 10th percentile were subsequently removed from it, everyone had full testing data for the 

first period, but there was nevertheless a negligible percentage of missingness for the follow-up 

sample that was usually subtest-specific, although missingness was unrelated to initial scoring.  

Measures 

 Intelligence Testing. The sample was administered five tests on their introduction into 

the military and a further fourteen at the follow-up. The five introductory tests were the Army 

Classification Battery (ACB) verbal subtest, the ACB arithmetic subtest, the Pattern Analysis 

Test, the General Information Test (GIT), and the Armed Forces Qualification Test (AFQT). The 

individual items for the AFQT’s subtests were not available, but items for the GIT were. The 

fourteen follow-up tests were the ACB verbal and arithmetic subtests, the Wide-Range 

Achievement Test, the Word List Generation Test, California Verbal Learning Test, Wisconsin 

Card Sorting Test, Paced Auditory Serial Addition Test, the Wechsler Adult Intelligence Scale – 

Revised (WAIS-R) block design and general information scales, the left- and right-handed 

Grooved Pegboard Task, and the direct, immediate, and delayed versions of the Rey-Osterrieth 

complex figure drawing (CFD) task. Because they were so highly associated with one another, 

we combined the immediate and delayed CFD scores. These variables have been described by 

the CDC and other publications (Larsen et al., 2008; Lasker et al., 2021). 

 Educational Attainment. Participants provided the number of years of education they 

completed during their follow-up interview. 

 Income. Participants provided their combined family gross income for the calendar year 

immediately prior to the telephone interview that preceded psychological and medical testing.  

 

 

 
3 https://www.cdc.gov/nceh/veterans/default1c.htm. 
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Analyses 

 The lavaan R package (Rosseel et al., 2022) was used to estimate and compare all of our 

structural equation models, including those derived from RBD’s(2015) study. Intelligence was 

identified at both timepoints through standardization of the latent variances for the configural 

and baseline models. For model fit comparisons, we focused primarily on the χ2 exact fit test, 

since this is the most powerful test of model fit (Ropovik, 2015), but we also referenced other 

measures of model fit, with our preferences ordered such that BIC was preferred to AIC, which 

ranked above CFI, which we preferred to RMSEA, since this is the typical ordering of how 

sensitive these fit indices are to detecting misfit. We dropped nonsignificant paths from the 

model (p > .05) and kept them dropped on an individual basis if the subsequent change in 

model fit was also significant (p < .05) to avoid post-selection biasing to our other p-values, and 

taking after RBD (2015), we did not display nonsignificant paths in the diagrams of our models.  

Results 

 Descriptive statistics are provided in Table 1 alongside a correlation matrix of all 

variables included in our models. We replicated the positive manifold of intercorrelations 

among our intelligence tests (r’s between .115 and .824, p’s <.0001). Correlations with education 

were universally positive (.134 – .555), and correlations with income were also universally 

positive (.165 – .392). Educational and adult income correlations with early cognitive test results 

(.241 – .532) were notable since scoring predated income and most of higher education. The 

income-education correlation was significant and positive (.349). 

[Table 1] 

 We performed factor analyses of the tests in each era. There were only five introductory 

tests, so we could not discover any coherent group factors, but a model with g alone fit well 

(CFI = .991, RMSEA = .084, SRMR = .018)4. This fit can be compared to the dynamic fit cutoffs for 

a single-factor model (CFI = .981, RMSEA = .105, SRMR = .028, N = 4,355), and the dynamic fit 

cutoffs work for the later tests (CFI = .961, RMSEA = .048, SRMR = .036, N = 4,426), which had an 

empirical fit that was sufficiently close (CFI = .964, RMSEA = .059, SRMR = .037). To maintain 

comportment with prior work on this subject (especially RBD’s), we elected to test these single-

factor models, but note that the results differed little if residual covariances were modeled as 

 
4 This model had one residual covariance, between the AFQT and PA tests (r = .447). The dynamic fit 

cutoffs if two-thirds of items had a residual correlation greater than .3 were CFI = .968, RMSEA = .141, and 

SRMR = .037. For the later test model, dynamic fit cutoffs assumed a third of variables had residual 

correlations greater than .3, while the model required residual covariances between CD and CC and 

GPTL and GPTR and, for reasons of theoretical coherence and lack of fitting alternative factor models 

with more group factors, we had an additional nine residual covariances. A model with more group 

factors was not possible beyond reasons of fit, because some had only two indicators, which made them 

effectively identical to residual covariances. The dynamic fit cutoffs if two-thirds or all items had residual 

covariances greater than .3 were CFI = .925 and .896, RMSEA = .069 and .084, and SRMR = .046 and .051.  
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group factors, as had to be done to obtain them, for reasons of model fit and the high generality 

of the test batteries.  

 The three types of models we tested are taken from RBD, but slightly modified because 

instead of a manifest variable in the first period, we have a latent variable. These models are 

illustrated in Figure 1. The first models we tested were the models of the stability of intelligence 

which resembled those, except without education. The fits for those models can be found in 

Table 2. The model where intelligence was neither perfectly stable over time nor unrelated 

between time points fit well, while the others fit horribly. The correlation between intelligence 

measured at introduction and follow-up was .945 (p < .0001).5 FSIQ correlations, however, were 

smaller, at .817 which, when corrected for an underestimated reliability of .8, still significantly 

differed from the latent correlation (.913, CI: .903 – .927).  

[Figure 1] 

[Table 2] 

Next, we pursued our replication of RBD. In each model, the path from early intelligence 

to later intelligence was significant and positive (r’s between .901 and .941), as was the path 

from early intelligence to education (.564 – .574). Model A is Figure 2, Model B is Figure 3, and 

Model C is Figure 4. Residual covariances were not pictured but are available in the analysis 

codebook. The model fits for these models are contained in Table 3.  

Model A clearly fit worse than either of models B or C, with a difference of more than 

200 AIC and BIC, marginally worse CFI, and 300 additional χ2 and only seven additional 

degrees of freedom. The comparison between models B and C required more delicate 

consideration. Firstly, their conclusions are identical with respect to intelligence: Model C did 

not include a path from education to intelligence, and it was nonsignificant in Model B (p = 

.156). Moreover, Model B fit worse in terms of a χ2 test (p = .0055) and had seven additional AIC. 

Due to its five additional degrees of freedom, its BIC was considerably better, but for models 

that are not directly nested, this is not as meaningful as AIC. Model C had to be selected over 

Model B because (1) Model B did not correspond to its theoretical description anyway, and (2) it 

fit worse by the best metrics for discriminating model specifications.  

In following RBD’s methods, we also carried out their three supplementary analyses. 

First, we reinstated all drop paths and performed our model comparisons again. Second, we 

 
5 This analysis is also interesting in so far as it showcases the extent to which different test batteries 

produce measurements of the same general factor of intelligence, which is interesting and a confounder 

to stability. Overcoming this difference is difficult because of the limited number of shared tests between 

timepoints, but we can partially address it by assessing the correlation of general factors composed of 

common subtests. We did this and the correlation was 1.041, i.e., evidence for an ultra-Heywood case. 

Moreover, the correlations with these tests removed in aggregate, and from the endpoint only were .927, 

and .940, respectively. This .940 was significantly different from .945. 
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dropped all our residual covariances and ran the models again. Third, we adjusted all our later 

subtests for early intelligence and dropped the path from early to later intelligence. All three 

methods conformed to our initial pattern of results, much like RBD’s situation. Our conclusion 

from this analysis was identical to theirs: “In all cases, then, the fit of Model C – which did not 

contain a path from educational duration to the g factor of intelligence – was superior, 

consistent with the position that education has domain-specific, and not domain-general, effects 

on intelligence.” (RBD, p. 578).   

 Our final analysis was to assess the effects of education on a measure of participants’ 

income. This comparison was aimed at testing whether the relationship between education and 

socioeconomic status was mediated by cognitive enhancements. Since education does not 

enhance intelligence, intelligence must be kept in the model. Because, due at least to job market 

signaling, education should be the dominant signal for educational effects, the test is whether a 

model with education depletes the validity of the subtests it affected. Table 4 contains these 

results, and our codebook explores other specifications, all of which produced consistent 

qualitative conclusions. Namely, education still affects income net of any cognitive 

enhancement, and what subtests validity there exists for predicting income is substantially 

unaffected by the inclusion of education in the model. The lone exception was a marginally 

significant subtest whose effect became nonsignificant when education was included. With all 

subtests and education removed, the beta for intelligence is .425, with everything but education 

removed, it is .347, and with both education and intelligence modeled but subtests removed, 

their respective betas are .176 and .321. To the extent our test battery indexes specific abilities, 

we can say that the socioeconomically beneficial effects of education are independent of either 

general or specific cognitive enhancements, and that both education and intelligence have 

independent predictive validity.  

Discussion 

 Our aims were threefold: Firstly, we wanted to establish how stable intelligence was 

over an important part of the human lifespan: the transition from early adulthood to midlife. 

Secondly, we wanted to perform a replication study of Ritchie, Bates & Deary’s seminal 2015 

work delving into the effect of education on cognitive development. And finally, we wished to 

know to what extent the effect of education on socioeconomic attainment in the form of income 

depended on cognition enhancement. We were fortunate to have measures of attained adult 

income around the time that quantity typically becomes stable in the United States, to have such 

a large sample, and to have such excellent intelligence measures for those purposes.  

 The stability of intelligence over time in this data was exceptional for typical stability 

studies which exclusively use manifest variables. The latent stability exceeded previously 

published estimates from this dataset that used exploratory factor analysis for factor 

computation (Larsen et al., 2008). The likeliest reason for this is probably that EFA errs more 

than CFA, although the estimand for both is the same in this case.  
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We noted that typical studies use manifest scores. In some cases, like RBD’s, they use a 

mixture of manifest and latent variables. We propose that, in general, the stability of intelligence 

will be estimated such that studies using only manifest variables will estimate the lowest 

stability, followed by studies with mixed variable types, and finally, by studies using latent 

variables exclusively. We had the opportunity to generate that pattern, finding that manifest-

manifest r = .817, manifest-latent r = .915 between early FSIQ and later intelligence and r = .859 

between early intelligence and later FSIQ, and latent-latent r = .945. Even considerably 

overcorrecting FSIQs for measurement error left us with greater latent stability. Stability was 

basically unchanged removing common subtests.  

The level of achieved stability provides substantial construct validity evidence for 

intelligence. One requirement for construct validity and the interpretation of test-retest 

reliability as measurement of a common construct at different times is that there is longitudinal 

invariance which, due to the similarity of our measured constructs across time points, seems to 

be high enough for that to be a tenable suggestion. This is important because, unless intelligence 

is causal, it would not be meaningful to assess how influenced it was; construct validity is about 

causality, and one of its underassessed requirements probably worked out in our data. 

However, because our tests differed, we could not directly assess longitudinal invariance.    

We replicated RBD’s results, and thus, their conclusions as well: “[E]ducation’s ability to 

raise intelligence test scores is driven by domain-specific effects that do not show ‘far transfer’ 

to general cognitive ability.” (Ritchie, Bates & Deary, 2015, pp. 578-579). This puts education 

into a class alongside every other known intervention that works for raising scores on 

intelligence tests, from cognitive training in general (Sala et al., 2019; Sala & Gobet, 2017) to 

notorious interventions like the Dual N-Back (Branwen, 2012) or even phenomena like the 

Flynn effect (Beaujean & Sheng, 2010; Beaujean, 2006; Beaujean & Osterlind, 2008; Beaujean & 

Sheng, 2014; Benson et al., 2015; Fox & Mitchum, 2013, 2014; Must et al., 2009; Must & Must, 

2013, 2018; Pietschnig et al., 2013; Pietschnig & Gittler, 2015; Shiu et al., 2013; Wai & Putallaz, 

2011; Wicherts et al., 2004; Woodley et al., 2014) or adoption (Jensen, 1997; te Nijenhuis et al., 

2015). That is, though they succeed in raising scores, they fail to raise intelligence. 

A now-antiquated method, Jensen’s method of correlated vectors, commonly known as 

MCV, was recently invoked in a relevant debate. In a series of papers, te Nijenhuis et al. (te 

Nijenhuis, van der Boor, et al., 2019; te Nijenhuis, Choi, et al., 2019) and Flynn (Flynn, 2019b, 

2019a) debated Jensen effects – positive associations between various variables and g loadings – 

and te Nijenhuis et al. concluded that the relationship between a vector of education 

relationships with various tests and those tests’ g loadings was null, and thus education was not 

a Jensen effect. Our own data support the opposite conclusion, as we found an extremely strong 

Jensen effect (r = .921, Tucker’s ϕ = .986). At the same time, we found that education did not 

affect g. The difference between an actual test via structural equation modeling and correlating 

vectors without a statistical test is very marked in this example. For answering questions about 

what affects g, MCV ought to be substituted with SEM when possible.   
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Explaining why MCV errs with education data seems straightforward. Education should 

be expected to be most strongly related to verbal and otherwise scholastic tests, which also tend 

to be more g loaded (Kan et al., 2013). The problem with MCV that can emerge in meta-analyses 

of the relationship between g and education, or other criteria in the absence of measurement 

bias is mostly in that MCV is upwardly bounded by a variety of factors, including sample size, 

the standard deviation of loadings, the size of group differences, and so on (Dutton & 

Kirkegaard, 2021; Sorjonen et al., 2017). Therefore, low statistical power is a major concern with 

MCV. Importantly, MCV applied to the loadings from our final models would not be 

appropriate because of post-selection inference issues with the resulting estimates of effects in 

addition to low power, so MCV does not offer additional analytic leverage to SEMs. The 

conclusions that can be rendered with the two methods applied to the description of things that 

affect scores changes have no inherent relationship. 

Because of the well-known finding that most of the validity of intelligence tests comes 

from intelligence and specific abilities have limited predictive validity (Ree & Carretta, 2022), it 

should be a priori questionable whether the effects of education on specific abilities should 

predict higher socioeconomic status. There is considerable evidence that education affects 

socioeconomic attainment (Sandewall et al., 2014), but also strong evidence against mandatory 

schooling reforms boosting socioeconomic attainment (Clark & Cummins, 2020) and some 

evidence that mandatory education has not boosted economic growth (Edwards, 2018). The 

reason for the former effect – which does appear causal – is hotly debated. The two dominant 

hypotheses, human capital and signaling (Caplan, 2018), predict, respectively, that education 

influences socioeconomic attainment via fostering skills or through indicating skills to 

employers without actually affecting them. Our data do not allow us to differentiate these 

hypotheses cleanly but, like McGue et al., (2022), our results clearly favor signaling. In our data, 

education did not provide broad cognitive improvements, nor were its specific effects 

mediators of the effect of education on income. To our awareness, this is the first attempt to 

provide a quantitative hint towards Ritchie & Tucker-Drob’s (2018) fifth question: “[h]ow 

important are [the cognitively beneficial] effects [of education]?” (p. 10). For income, our answer 

is virtually nil.  

The observed pattern of results was robust to the use of early intelligence rather than 

later intelligence, albeit with the WGI effect nonsignificant in the absence of education. We also 

briefly looked at several health outcomes but produced mostly null relationships and highly 

inconsistent effects. Because we never had plans to attempt to pull these outcomes into the 

nomothetic web of education, we also omitted them from analysis. 

Limitations and Future Directions 

 The stability of intelligence was almost certainly underestimated in our dataset. The 

reason for this is psychometric sampling error. The first-order model of intelligence that we 

used pollutes intelligence with whatever specific variance is overrepresented among the 
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manifest variables. Using a higher-order model helps to obviate this issue, as it reduces the 

relative quantities of different forms of specific variance, in effect delivering a “purer” estimate 

of intelligence. As noted by Floyd et al. (2013, p. 385): “A higher order factor should control for 

overrepresentation and underrepresentation of measures of the same Stratum I or II ability that 

may contribute to psychometric sampling error.”  

If we had enough variables for a higher-order model – meaning enough variables for 

many coherent group factors at both timepoints – it is likely that stability would have been 

higher for two reasons. First, because intelligence is known to be more stable than specific 

abilities, and second, because the content differences over time may have led to unrepresented 

variance in one or the other period being subsumed into intelligence, artificially reducing their 

association. A clear direction for future studies, then, is to assess the long-term stability of 

intelligence measurements with an intentional effort to reduce the pernicious influence of 

psychometric sampling error. 

 An obvious qualification of our validity results for education is that we may have lacked 

the power to detect the potentially subtle effects of educational benefits to specific skills to 

income (Ree & Carretta, 2011), but the signs of some of the effects were in the wrong directions 

in the first place, so this is difficult to humor. Regardless, it appears that, at a minimum, the 

socioeconomically beneficial effect of education is not totally mediated by subtests it affects, and 

that their predictive validity is largely independent of education. Just as well, it seems the 

predictive validity of education is largely distinct from its effects on specific skills. We may have 

had insufficient breadth to find specific skill mediators of educational effects on attained income 

though. For example, if spatial or mechanical skills, noted for their job especial academic and 

job market relevance (Berkowitz & Stern, 2018; Prada & Urzúa, 2014; Wai et al., 2009), were 

insufficiently modeled, we would not have had the ability to assess how much those mediated 

educational effects. However, there is some evidence that students high in spatial ability 

perform worse in school, as they consider it to be less interesting than the world of work (Gohm 

et al., 1998). Over certain timespans, outcomes like income may appear to be negatively related 

to education because of the age-related tradeoff between the two that could result. Moreover, 

selection of this sort may generate apparent negative effects of education in general that 

confound inference with longitudinal data like ours that only has two measurement periods. 

 We must also embrace several of the caveats from RBD. Namely, developmental, and 

occupational effects on intelligence and specific skills could not be disentangled and may have 

been related, although not apparently though an income-generating pathway. Additionally, the 

breadth of cognitive tests must be increased from our five at induction into the sample and 

thirteen in the end and the number of group factors should greatly increase, so that effects on 

reliable, broad indicators of ability net of intelligence can be investigated. It is likely that a 

bifactor model would help with this, since it could increase the typically abysmal reliability of 

group factors (Benson et al., 2018) by incorporating variance from local independence violations 

(Reise et al., 2007) which may, in fact, be reliable group factor variance. However, if that causal 
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model does not stand up when tested with appropriate data (e.g., Franić et al., 2013), then that 

should not be done. Our estimated educational effects may have also been more limited than 

those found by RBD because they were measured at a point that was nearer to the typical 

termination of education than theirs, so effects may have, to some extent, already accrued to the 

scores measured at sample induction.  

Conclusions 

 We assessed the stability of intelligence at the latent level, the specificity versus 

generality of educational effects on intelligence test results, and the mediation of educational 

effects on socioeconomic attainment by its effects on specific tests. Our first result was that 

intelligence was very stable in the transition from early adulthood to middle-age. Our second 

result was that a model of the effects of education in which its effects were specific to certain 

tests rather than affecting intelligence directly fit our data best. And our third result, was that 

educational effects on socioeconomic attainment were largely independent of its effects on 

intelligence test results. Our findings are consistent with other latent-level investigations of the 

stability of intelligence measured across the lifespan (Rönnlund et al., 2015; Yu et al., 2018), 

Ritchie, Bates & Deary’s (2015) analysis of the generality of the effects of education on 

intelligence test results, and a growing literature showing that education affects greater 

socioeconomic attainment regardless of how smart you are (McGue et al., 2022). 
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Table 1. Descriptive Statistics and Correlations for Study Variables 

Variable n Time M SD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1. ACB Verbal 4,384 Introduction 107.16 22.26 —                    

2. ACB Arithmetic 4,385 Introduction 104.43 22.01 .699 —                   

3. PA a 4,386 Introduction 104.32 22.64 .516 .576 —                  

4. GIT a 4,376 Introduction 102.06 18.43 .659 .589 .467 —                 

5. AFQT a 4,441 Introduction 0.14 0.81 .714 .737 .728 .645 —                

6. WRAT a 4,460 Follow-up 61.17 14.73 .746 .589 .412 .517 .578 —               

7. CVLT a 4,462 Follow-up 11.06 2.33 .317 .331 .264 .250 .312 .309 —              

8. WCST a 4,462 Follow-up 0.79 0.17 .327 .360 .331 .282 .368 .292 .192 —             

9. WBD a 4,462 Follow-up 10.52 2.64 .437 .502 .634 .418 .629 .382 .269 .356 —            

10. WGI a 4,462 Follow-up 10.07 2.80 .725 .635 .482 .582 .626 .652 .329 .330 .453 —           

11. GPT-R a 4,450 Follow-up -73.66 11.82 .204 .201 .261 .174 .253 .196 .117 .186 .301 .173 —          

12. GPT-L a 4,448 Follow-up -77.38 13.77 .208 .212 .263 .192 .269 .204 .115 .196 .307 .186 .634 —         

13. PASAT a 4,450 Follow-up 108.84 50.72 .408 .521 .371 .365 .432 .417 .289 .285 .388 .366 .226 .216 —        

14. CD a 4,462 Follow-up 32.73 3.31 .290 .333 .380 .254 .372 .269 .205 .291 .398 .278 .223 .223 .247 —       

15. CC a 4,462 Follow-up 0* 0.98 .309 .343 .464 .316 .461 .275 .329 .274 .502 .351 .201 .232 .288 .489 —      

16. WLGT a 4,462 Follow-up 35.12 10.92 .443 .370 .289 .310 .360 .504 .278 .209 .281 .414 .168 .157 .357 .176 .220 —     

17. ACB Verbal 4,462 Follow-up 116.52 23.04 .824 .658 .484 .620 .670 .766 .333 .361 .453 .719 .220 .226 .440 .325 .322 .463 —    

18. ACB Arithmetic 4,462 Follow-up 104.56 24.40 .642 .785 .545 .548 .688 .585 .356 .396 .532 .622 .240 .236 .562 .384 .394 .365 .691 —   

19. Education 4,376 Follow-up 4.34 1.52 .360 .367 .241 .303 .323 .273 .165 .212 .222 .312 .169 .165 .268 .186 .175 .189 .341 .392 —  

20. Income 4,460 Follow-up 13.29 2.30 .532 .487 .343 .377 .430 .511 .202 .241 .275 .555 .134 .149 .304 .209 .222 .338 .506 .467 .349 — 

a Pattern Analysis Test, General Information Test, Armed Forces Qualifying Test, Wide-Range Achievement Test, California Verbal Learning Test, Wisconsin Card Sorting Test, 

WAIS-R Block Design, General Information, Paced Auditory Serial Addition Test, Grooved Pegboard Right, Left, Complex Figure Drawing Direct, Later, Word List Generation Test. 

* 2.004e-16. 
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Table 2. The Stability of Intelligence over Time 

Model Χ2/df CFI RMSEA (95% CI) SRMR AIC/BIC 

No Relationship 8439.536/120 .819 .127 (.124 - .129) .273 182974/183299 

Empirical 2101.090/119 .957 .062 (.060 - .064) .042 176637/176969 

Identity 3615.279/120 .924 .082 (.080 - .084) .151 178150/178475 

Note: The “No Relationship” model forced the correlation between intelligence measured early and later in life to be zero, the “Empirical” model allowed it to be 

freely estimated, and the “Identity” model constrained it to one. 

Table 3. The Effect of Education on Intelligence 

Model Description Χ2/df CFI RMSEA (95% CI) SRMR AIC/BIC 

A Education to Intelligence 2456.636/135 .952 .063 (.061 - .065) .043 187090/187441 

B Education to Intelligence and Specific Tests 2171.200/128 .958 .061 (.059 - .063) .040 186819/187214 

C Education to Specific Tests 2154.666/123 .958 .062 (.060 - .064) .039 186812/187239 

Note: Model B only differed from Model C in terms of the specific tests affected because the path from education to intelligence was nonsignificant (r = .017, CI: -

.006 – .040, p = .156). 
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Table 4. Effects on Income in Different Models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Bolded subtests had inconsistently significant effects. Later intelligence used.

Model 

Variable 

Beta p 

No Education   

        Intelligence .681 <.001 

WRAT -.079 .001 

WBD -.104 <.001 

WGI -.077 .005 

CC -.033 .047 

WLGT -.025 .137 

ACVL -.080 .016 

ACAL .053 .090 

Education Included   

Intelligence .605 <.001 

WRAT -.109 <.001 

WBD -.086 <.001 

WGI -.124 <.001 

CC -.028 .086 

WLGT -.032 .057 

ACVL -.067 .040 

ACAL .050 .104 

    Education .203 <.001 



 

Figure 1. Tested Theoretical Models 

 

As in RBD, each model predicts that early-life intelligence affects later-life intelligence. Model A implies effects of education on intelligence. Model 

B implies effects of education on both intelligence and at least one and potentially all – as indicated by dashed lines – specific subtests. Model C 

implies effects on at least one and potentially all specific subtests. 
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Figure 2. Model A 
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Figure 3. Model B 
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Figure 4. Model C 
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